当前位置: 首页 > article >正文

0基础学习PyFlink——用户自定义函数之UDTF

大纲

  • 表值函数
  • 完整代码

在《0基础学习PyFlink——用户自定义函数之UDF》中,我们讲解了UDF。本节我们将讲解表值函数——UDTF
在这里插入图片描述

表值函数

我们对比下UDF和UDTF

def udf(f: Union[Callable, ScalarFunction, Type] = None,
        input_types: Union[List[DataType], DataType, str, List[str]] = None,
        result_type: Union[DataType, str] = None,
        deterministic: bool = None, 
        name: str = None, 
        func_type: str = "general",
        udf_type: str = None
        ) -> Union[UserDefinedScalarFunctionWrapper, Callable]:
def udtf(f: Union[Callable, TableFunction, Type] = None,
         input_types: Union[List[DataType], DataType, str, List[str]] = None,
         result_types: Union[List[DataType], DataType, str, List[str]] = None,
         deterministic: bool = None,
         name: str = None
         ) -> Union[UserDefinedTableFunctionWrapper, Callable]:

可以发现:

  • UDF比UDTF多了func_type和udf_type参数;
  • UDTF的返回类型比UDF的丰富,多了两个List类型:List[DataType]和List[str];

特别是最后一点,可以认为是UDF和UDTF在应用上的主要区别。
换种更容易理解的说法是:UDTF可以返回任意数量的行作为输出而不是像UDF那样返回单个值(行)。
举一个例子:

word_count_data = ["A", "B", "C", "a", "C"] 

我们希望统计上面这些字符的个数,以及小写后字符的个数。这样A的个数是1,a的个数是2(因为a算一个,A小写后又算一个)。C的个数是2,g的个数是2。
这就要求统计算法在遇到大写字母时,需要统计大小写两种字母;而遇到小写字母时,只需要统计小写字母。

    @udtf(result_types=[DataTypes.STRING()], input_types=row_type_tab_source)
    def rowFunc(row):
        if row[0].isupper():
            yield row[0]
            yield row[0].lower()
        else:
            yield row[0]

yield关键字返回的是generator生成器。Table API对rowFunc的调用最终会生成[“A”,“a”,“B”,“b”,“C”,“c”,“a”,“C”,“c”]。
和调用UDF不同的是,需要使用flat_map来调用UDTF。flat即为“打平”,可以生动的理解为将多维降为一维。

    tab_trans=tab_source.flat_map(rowFunc)
    tab_trans.execute().print()
+--------------------------------+
|                             f0 |
+--------------------------------+
|                              A |
|                              a |
|                              B |
|                              b |
|                              C |
|                              c |
|                              a |
|                              C |
|                              c |
+--------------------------------+
9 rows in set

由于我们没有指定经过处理的值所属的字段名称,于是会使用默认的f0作为字段名。我们可以使用alias来给它别名下。

    tab_trans_alias=tab_trans.alias('trans_word')
    tab_trans_alias.execute().print()
+--------------------------------+
|                     trans_word |
+--------------------------------+
|                              A |
|                              a |
|                              B |
|                              b |
|                              C |
|                              c |
|                              a |
|                              C |
|                              c |
+--------------------------------+
9 rows in set

最后我们就可以用这个新的表做字数统计计算

    tab_trans_alias.group_by(col('trans_word')) \
        .select(col('trans_word'), lit(1).count) \
        .execute_insert("WordsCountTableSink") \
        .wait()
+I[A, 1]
+I[a, 2]
+I[B, 1]
+I[b, 1]
+I[C, 2]
+I[c, 2]

完整代码

from pyflink.common import Configuration
from pyflink.table import (EnvironmentSettings, TableEnvironment, Schema)
from pyflink.table.types import DataTypes
from pyflink.table.table_descriptor import TableDescriptor
from pyflink.table.expressions import lit, col
from pyflink.common import Row
from pyflink.table.udf import udf,udtf,udaf,udtaf
import pandas as pd
from pyflink.table.udf import UserDefinedFunction

word_count_data = ["A", "B", "C", "a", "C"]  
    
def word_count():
    config = Configuration()
    # write all the data to one file
    config.set_string('parallelism.default', '1')
    env_settings = EnvironmentSettings \
        .new_instance() \
        .in_batch_mode() \
        .with_configuration(config) \
        .build()
    
    t_env = TableEnvironment.create(env_settings)
    
    row_type_tab_source = DataTypes.ROW([DataTypes.FIELD('word', DataTypes.STRING())])
    tab_source = t_env.from_elements(map(lambda i: Row(i), word_count_data), row_type_tab_source)

    # define the sink schema
    sink_schema = Schema.new_builder() \
        .column("word", DataTypes.STRING().not_null()) \
        .column("count", DataTypes.BIGINT()) \
        .primary_key("word") \
        .build()
        
    # Create a sink descriptor
    sink_descriptor = TableDescriptor.for_connector('print')\
        .schema(sink_schema) \
        .build()
    
    t_env.create_temporary_table("WordsCountTableSink", sink_descriptor)
    
    @udtf(result_types=[DataTypes.STRING()], input_types=row_type_tab_source)
    def rowFunc(row):
        if row[0].isupper():
            yield row[0]
            yield row[0].lower()
        else:
            yield row[0]

    tab_trans=tab_source.flat_map(rowFunc)
    tab_trans.execute().print()
    tab_trans_alias=tab_trans.alias('trans_word')
    tab_trans_alias.execute().print()
    tab_trans_alias.group_by(col('trans_word')) \
        .select(col('trans_word'), lit(1).count) \
        .execute_insert("WordsCountTableSink") \
        .wait()

if __name__ == '__main__':
    word_count()

http://www.kler.cn/a/106361.html

相关文章:

  • RabbitMQ教程:路由(Routing)(四)
  • 什么是Spring Boot Actuator
  • Python爬虫项目 | 一、网易云音乐热歌榜歌曲
  • 【操作系统不挂科】<Linux进程概念(4)>选择题(带答案与解析)
  • Git 中的 patch 功能
  • 控制器ThinkPHP6
  • 机器学习-朴素贝叶斯之多项式模型
  • Pytorch公共数据集、tensorboard、DataLoader使用
  • 揭秘!新手主播如何快速出圈,看拓世法宝分分钟打造百万直播间
  • uniapp开发小程序—picker结合后台数据实现二级联动的选择
  • win10 + VS2017 编译libjpeg(jpeg-9b)--更新
  • Ansible playbook的block
  • 229. 多数元素 II
  • 【HarmonyOS】元服务卡片router实现跳转到指定页面并传动态参数
  • 【Python 千题 —— 基础篇】列表排序
  • Kafka To HBase To Hive
  • NReco.LambdaParser使用案例
  • docker、docker-compose安装教程,很详细
  • 【wvp】wvp设备上可以开启tcp被动模式
  • 人工智能和机器学习:走向智能未来的关键
  • 数字化转型系列主题:数据中台知识体系
  • vue中报 TypeError: Assignment to constant variable.
  • oracle统计信息
  • 万能鼠标设置 SteerMouse v5.6.8
  • 【高效开发工具系列】Postman
  • 交换机基础(四):MSTP负载均衡配置案例