当前位置: 首页 > article >正文

R语言的物种气候生态位动态量化与分布特征模拟实践技术

在全球气候快速变化的背景下,理解并预测生物种群如何应对气候变化,特别是它们的地理分布如何变化,已经变得至关重要。利用R语言进行物种气候生态位动态量化与分布特征模拟,不仅可以量化描述物种对环境的需求和适应性,预测物种的潜在生态位和分布,还可以模拟物种分布的动态变化,捕捉生物种群生态位的时空异质性。这种技术为我们提供了一种更加精确、系统的工具,有助于我们更好地理解生物种群分布的生态驱动机制,为制定和实施生物保护策略提供科学依据。

    R语言是一种广泛用于统计分析和图形表示的编程语言,强大之处在于可以进行多元数据统计分析,以及丰富的生态环境数据分析的方法,在生态学领域得到广泛应用。将通过R语言多个程序包与GIS融合应用,提升物种气候生态位动态量化与分布特征模拟的研究方法和技能。

点击查看原文链接icon-default.png?t=N7T8https://mp.weixin.qq.com/s?__biz=Mzg2NDYxNjMyNA==&mid=2247542523&idx=6&sn=5617b35f6e35981c04fc1ac8dab15b06&chksm=ce64cc10f91345069f5a5910a1d827a036eb057961100649c43c344cdf9acdbb2e46191f5db3&scene=21#wechat_redirect

 目标:

1、理解物种气候生态位的概念和作用;

2、掌握R语言在物种气候生态位动态量化与分布特征模拟中的基本操作;

3、学会利用R语言进行物种气候生态位动态量化与分布特征模拟的实际案例分析;

4、培养对物种气候生态位动态量化与分布特征模拟的研究方法和技能。

专题一、引言

1) 物种气候生态位理论基础

2) 物种分布特征与物种分布模型的基本原理

3) R语言基础 (R语言环境设置和基本操作、数据导入、处理和可视化)

专题二、数据获取与处理方法

1) 数据获取途径与方法

掌握模型所需数据类型,了解常用数据库与数据获取方法。

2) 数据清洗与变量选择

掌握模型数据输入格式与数据选择标准,学会用多种方式实现数据清洗与变量选择

专题三、组合物种分布模型(Ensemble Species Distribution Model)的原理与使用

1)组合物种分布模型算法原理与参数组成

常用算法:通用加法模型(GAM)、广义线性模型(GLM)、多元自适应回归(MARS)、分类树分析(CTA)、广义增强模型(GBM)、最大熵(Maxent)、人工神经网络(ANN)、随机森林(RF)、支持向量机(SVM)

章节目标:掌握不同算法的原理与参数设置方法

2)物种分布特征模拟

分别基于单一算法与组合算法进行物种分布特征模拟,并读模拟结果。

章节目标:可独立使用R语言完成物种分布特征模拟。

3)效果评价

评价指标:接收操作特征 (ROC) 曲线 (AUC) 下的面积、Cohen 的 Kappa 系数、遗漏率、灵敏度(真阳性率)和特异性(真阴性率)

章节目标:了解不同评价指标计算原理。

4)物种分布特征预测

章节内容与目标:设置不同情景,实现物种适生区预测

专题四、拓展研究

1)物种气候生态位动态量化

以入侵物种互花米草为例,分析量化物种在原产地与入侵地之间的生态位的差异性。主要步骤:二维网格物种地理空间和环境空间的定义、应用核平滑计算二维环境空间的气候密度、通过随机检验方法对原产地和入侵区气候生态位的相似性进行统计检验,量化入侵区相比原产地的气候生态位动态等。

2)物种适生区质心转移

基于物种在不同时空尺度的模拟结果,统计并分析物种适生区变化情况,并在空间上实现质心转移的可视化分析。

专题五、结果分析与论文写作

1)不同算法结果解读、比较

2)论文制图与写作技巧

专题六、案例分析

1)基于单个物种分布模型的案例

2) 基于组合物种分布模型的案例

专题七、课程总结和展望

1)物种分布模型的局限性和未来发展方向

2)学习资源和进一步学习的建议

 


http://www.kler.cn/a/106595.html

相关文章:

  • 三格电子——MODBUS TCP 转 CANOpen 协议网关
  • 脚本工具:PYTHON
  • Syncthing在ubuntu下的安装使用
  • OneFlow的简单介绍
  • RavenMarket:用AI和区块链重塑预测市场
  • 要获取本地的公网 IP 地址(curl ifconfig.me)
  • P1868 饥饿的奶牛
  • 2023深耕kotlin,谈谈前景
  • webgl速记之如何根据用户硬件进行性能模式OR质量模式的切换的设计思路
  • Jetpack:019-Jetpack的导航二(传递数据)
  • 基于大数据的时间序列股价预测分析与可视化 - lstm 计算机竞赛
  • 如何做好建筑翻译呢
  • C++——C++入门(二)
  • 读书笔记:c++对话系列,模板方法模式(Template Method Pattern)
  • #力扣:2315. 统计星号@FDDLC
  • 电大搜题:开启智慧学习新时代
  • 2023年第四届MathorCup大数据竞赛(A题)|坑洼道路检测和识别|数学建模完整代码+建模过程全解全析
  • 软件工程——期末复习知识点汇总
  • python+request接口自动化框架
  • Transformer模型 | 用于目标检测的视觉Transformers训练策略
  • 多测师肖sir_高级金牌讲师__接口测试之tonken (5.6)
  • 异步编程详解(.NET)
  • java毕业设计基于springboot的民宿预订信息网站
  • Matter.js 插件:matter-wrap(世界是圆的)
  • 主流架构(gcc、msvc、x86、x64、arm)中double与float浮点数保留精度(末尾清零)
  • KV STUDIO的安装与实践(一)