当前位置: 首页 > article >正文

深入了解 Elasticsearch 8.1 中的 Script 使用

alt

一、什么是 Elasticsearch Script?

Elasticsearch 中的 Script 是一种灵活的方式,允许用户在查询、聚合和更新文档时执行自定义的脚本。这些脚本可以用来动态计算字段值、修改查询行为、执行复杂的条件逻辑等等。

二、支持的脚本语言有哪些

支持多种脚本语言,包括 PainlessExpressionMustacheJava等,其中默认的是Painless

alt

三、Painless 脚本的使用

Painless 是一种专为 Elasticsearch 设计的脚本语言,具有安全、快速、简单的特点,使其在 Elasticsearch 中非常方便入门。

  1. 安全性: Painless 被设计为一种安全的脚本语言。它采取了一系列的安全措施,如禁止无限循环、禁止访问 Java 类库中的危险类等,以减轻潜在的安全风险。

  2. 高性能: Painless 是为高性能而设计的,特别是在 Elasticsearch 中。它经过了优化,可以在大规模数据集上快速执行。

  3. 易学易用: Painless 实现了任何具有基本编码经验的人都自然熟悉的语法。Painless 使用 Java 语法的子集,并进行了一些额外的改进,以增强可读性并删除样板文件。

  4. 无需编译: Painless 脚本不需要预先编译。它可以在运行时解释,所以我们可以动态调整脚本而无需重新编译整个应用程序。

  5. 支持参数化: Painless 允许在脚本中使用参数,这可以使脚本更通用,适用于多种情况。参数化脚本可以接受外部传递的值,从而在不修改脚本的情况下改变其行为。

  6. 支持多种数据类型: Painless 支持多种数据类型,包括数字、字符串、日期、布尔值等。

  7. 集成性: Painless 被紧密集成到 Java 中,可以用于查询、聚合、脚本字段、脚本排序等各种用例。

3.1、编写我们的第一个脚本

使用的 Elasticsearch 版本为 8.1,历史文章除非特别说明,最近更文的 ES版本都为 Elasticsearch8.1 版本

脚本的组成有三个参数,只要是在 Elasticsearch API 支持脚本的地方,都可以使用如下三个参数来使用脚本。

 "script": {
    "lang":   "...",
    "source" | "id": "...",
    "params": { ... }
  }
  • lang:执行脚本语言类型,默认 painless
  • source,id:脚本的源码本身,或者提前存储的 脚本ID
  • params:作为变量传递给脚本的参数

下面我们将通过实际的例子来进行说明

3.2、在检索中使用脚本

  • 首先我们先往索引中插入一篇文档

    PUT zfc-doc-000007/_doc/1
    {
      "sum": 5,
      "message":"test painless"
    }
    
  • 使用脚本实现 sum的值 乘2,此处使用变量 multiplier,在脚本的参数中指定参数值为2,其中doc['sum'].value * params['multiplier']的意思就是获取文档中sum的值并乘以脚本中 multiplier 的值

    GET zfc-doc-000007/_search
    {
      "script_fields": {
        "my_doubled_field": {
          "script": { 
            "source": "doc['sum'].value * params['multiplier']", 
            "params": {
              "multiplier": 2
            }
          }
        }
      }
    }
    
  • 在获取脚本的参数中的变量值除了使用params['参数名']这种方式之外,还可以使用params.get('multiplier')方法获取

    GET zfc-doc-000007/_search
    {
      "script_fields": {
        "my_doubled_field": {
          "script": {
            "lang":   "painless",
            "source": "doc['sum'].value * params.get('multiplier');",
            "params": {
              "multiplier": 2
            }
          }
        }
      }
    }
    

上面我们是在检索请求中使用的脚本字段来使用的脚本,下面我们先内置一个脚本,通过使用脚本ID来使用内置的脚本

3.3、使用内置的脚本

  • 创建一个脚本calculate-score,它可以使用Math.log(_score * 2) + params['my_modifier']修改分数值

    POST _scripts/calculate-score
    {
      "script": {
        "lang": "painless",
        "source": "Math.log(_score * 2) + params['my_modifier']"
      }
    }
    
    
  • 创建完成的脚本我们可以使用_scriptAPI查看脚本的内容

    GET _scripts/calculate-score
    
  • 在检索中只需要如下指定脚本的ID即可进行检索时使用

    GET zfc-doc-000007/_search
    {
      "query": {
        "script_score": {
          "query": {
            "match": {
                "message": "painless"
            }
          },
          "script": {
            "id": "calculate-score", 
            "params": {
              "my_modifier": 2
            }
          }
        }
      }
    }
    
  • 如果想删除脚本只需要调用DELETE 即可

    DELETE _scripts/calculate-score
    

下面我们再来演示一下如何使用脚本更新文档中的内容

3.4、使用脚本操作文档

  • 先添加一个文档来进行测试

    PUT zfc-doc-000007/_doc/1
    {
      "counter" : 1,
      "tags" : ["red"]
    }
    
  • 使用脚本对文档中的 counter 的值与脚本中的 count 值进行相加

    
    POST zfc-doc-000007/_update/1
    {
      "script" : {
        "source": "ctx._source.counter += params.count",
        "lang": "painless",
        "params" : {
          "count" : 4
        }
      }
    }
    
  • 我们还可以对文档中的数组类型的tags字段进行增加子对象,比如增加一个blue

    POST zfc-doc-000007/_update/1
    {
      "script": {
        "source": "ctx._source.tags.add(params['tag'])",
        "lang": "painless",
        "params": {
          "tag": "blue"
        }
      }
    }
    
  • 使用脚本对文档中的 tags 的值进行删除,条件就是当 tag 的值与脚本中的值相等时删除。如下为当 tags 的值为blue时,删除blue

    POST zfc-doc-000007/_update/1
    {
      "script": {
        "source": "if (ctx._source.tags.contains(params['tag'])) { ctx._source.tags.remove(ctx._source.tags.indexOf(params['tag'])) }",
        "lang": "painless",
        "params": {
          "tag": "blue"
        }
      }
    }
    
  • 上面只是对已有字段的增加删除修改,下面还可以使用脚本进行新字段的增加,比如增加一个字段new_field,值是value_of_new_field

    POST zfc-doc-000007/_update/1
    {
      "script" : "ctx._source.new_field = 'value_of_new_field'"
    }
    
  • 上面是字段的增加,下面就是字段的移除

    POST zfc-doc-000007/_update/1
    {
      "script" : "ctx._source.remove('new_field')"
    }
    
  • 除了对字段的删除,数组对象内部值的删除,还可以对文档进行删除。如下,当 tags 里面包含 blue 时,删除当前文档

    POST zfc-doc-000007/_update/1
    {
      "script": {
        "source": "if (ctx._source.tags.contains(params['tag'])) { ctx.op = 'delete' } else { ctx.op = 'none' }",
        "lang": "painless",
        "params": {
          "tag": "blue"
        }
      }
    }
    

3.5、使用脚本解析日志信息

所谓的解析字符串,只是一组固定格式的字符串,提前使用变量的形式编译,在插入文档时,通过脚本进行解析保存,方便后面的检索等请求

假如我们有如下数据

"message" : "247.37.0.0 - - [30/Apr/2020:14:31:22 -0500] \"GET /images/hm_nbg.jpg HTTP/1.0\" 304 0"

那么我们可以使用如下变量的形式解析该字符串

%{clientip} %{ident} %{auth} [%{@timestamp}] \"%{verb} %{request} HTTP/%{httpversion}\" %{status} %{size}

下面我们使用例子来说明脚本解析字符串之后是何种形式的存在

  • 创建一个索引保存解析的数据

    PUT zfc-doc-000008
    {
      "mappings": {
        "properties": {
          "message": {
            "type": "wildcard"
          }
        }
      }
    }
    
  • 内置一个脚本,实现解析字符串信息,并提取需要的信息,如下为提取当前日志中的 http 响应信息response,对于如下脚本的测试API使用详情可以参考官网

    https://www.elastic.co/guide/en/elasticsearch/painless/8.1/painless-execute-api.html

    POST /_scripts/painless/_execute
    {
      "script": {
        "source": """
          String response=dissect('%{clientip} %{ident} %{auth} [%{@timestamp}] "%{verb} %{request} HTTP/%{httpversion}" %{response} %{size}').extract(doc["message"].value)?.response;
            if (response != null) emit(Integer.parseInt(response)); 
        """
      },
      "context": "long_field", 
      "context_setup": {
        "index": "zfc-doc-000008",
        "document": {          
          "message": """247.37.0.0 - - [30/Apr/2020:14:31:22 -0500] "GET /images/hm_nbg.jpg HTTP/1.0" 304 0"""
        }
      }
    }
    

如果我们还想操作当前解析的数据我们可以使用运行时字段,因为运行时字段不需要进行索引会更加的灵活,可以很方便的修改脚本及运行方式。

  • 那么我们现在删除一下刚刚创建的索引,重新添加一下,创建语句如下

    DELETE zfc-doc-000008
    PUT /zfc-doc-000008
    {
      "mappings": {
        "properties": {
          "@timestamp": {
            "format": "strict_date_optional_time||epoch_second",
            "type": "date"
          },
          "message": {
            "type": "wildcard"
          }
        }
      }
    }
    
  • 添加一个运行时字段来保存解析的结果

    PUT zfc-doc-000008/_mappings
    {
      "runtime": {
        "http.response": {
          "type": "long",
          "script": """
            String response=dissect('%{clientip} %{ident} %{auth} [%{@timestamp}] "%{verb} %{request} HTTP/%{httpversion}" %{response} %{size}').extract(doc["message"].value)?.response;
            if (response != null) emit(Integer.parseInt(response));
          """
        }
      }
    }
    
  • 添加几条测试数据用于测试

    POST /zfc-doc-000008/_bulk?refresh=true
    {"index":{}}
    {"timestamp":"2020-04-30T14:30:17-05:00","message":"40.135.0.0 - - [30/Apr/2020:14:30:17 -0500] \"GET /images/hm_bg.jpg HTTP/1.0\" 200 24736"}
    {"index":{}}
    {"timestamp":"2020-04-30T14:30:53-05:00","message":"232.0.0.0 - - [30/Apr/2020:14:30:53 -0500] \"GET /images/hm_bg.jpg HTTP/1.0\" 200 24736"}
    {"index":{}}
    {"timestamp":"2020-04-30T14:31:12-05:00","message":"26.1.0.0 - - [30/Apr/2020:14:31:12 -0500] \"GET /images/hm_bg.jpg HTTP/1.0\" 200 24736"}
    {"index":{}}
    {"timestamp":"2020-04-30T14:31:19-05:00","message":"247.37.0.0 - - [30/Apr/2020:14:31:19 -0500] \"GET /french/splash_inet.html HTTP/1.0\" 200 3781"}
    {"index":{}}
    {"timestamp":"2020-04-30T14:31:22-05:00","message":"247.37.0.0 - - [30/Apr/2020:14:31:22 -0500] \"GET /images/hm_nbg.jpg HTTP/1.0\" 304 0"}
    {"index":{}}
    {"timestamp":"2020-04-30T14:31:27-05:00","message":"252.0.0.0 - - [30/Apr/2020:14:31:27 -0500] \"GET /images/hm_bg.jpg HTTP/1.0\" 200 24736"}
    {"index":{}}
    {"timestamp":"2020-04-30T14:31:28-05:00","message":"not a valid apache log"}
    
  • 下面我们进行运行时字段检索响应为304的数据

    
    GET zfc-doc-000008/_search
    {
      "query": {
        "match": {
          "http.response": "304"
        }
      },
      "fields" : ["http.response"]
    }
    
    
  • 刚才是属于提前内置好运行时字段,我们也可以直接在检索时指定运行时字段来使用,但下面所示的仅在运行时有效。如下所示

    GET zfc-doc-000008/_search
    {
      "runtime_mappings": {
        "http.response": {
          "type": "long",
          "script": """
            String response=dissect('%{clientip} %{ident} %{auth} [%{@timestamp}] "%{verb} %{request} HTTP/%{httpversion}" %{response} %{size}').extract(doc["message"].value)?.response;
            if (response != null) emit(Integer.parseInt(response));
          """
        }
      },
      "query": {
        "match": {
          "http.response": "304"
        }
      },
      "fields" : ["http.response"]
    }
    

我们也可以根据特定的值进行拆分,获取所需要的信息

3.6、使用脚本解析 GC 信息

  • 例如如下 ElasticsearchGC 信息

    [2021-04-27T16:16:34.699+0000][82460][gc,heap,exit]   class space    used 266K, capacity 384K, committed 384K, reserved 1048576K
    
  • 下面我们根据 GC 信息编写一个解析模式

    [%{@timestamp}][%{code}][%{desc}]  %{ident} used %{usize}, capacity %{csize}, committed %{comsize}, reserved %{rsize}
    
  • 然后在检索时就可以使用如下语句来提交信息到运行时字段,首先添加测试数据,注意索引名称已经更换,解析模式不匹配会报错

    
    POST /zfc-doc-000010/_bulk?refresh
    {"index":{}}
    {"gc": "[2021-04-27T16:16:34.699+0000][82460][gc,heap,exit]   class space    used 266K, capacity 384K, committed 384K, reserved 1048576K"}
    {"index":{}}
    {"gc": "[2021-03-24T20:27:24.184+0000][90239][gc,heap,exit]   class space    used 15255K, capacity 16726K, committed 16844K, reserved 1048576K"}
    {"index":{}}
    {"gc": "[2021-03-24T20:27:24.184+0000][90239][gc,heap,exit]  Metaspace       used 115409K, capacity 119541K, committed 120248K, reserved 1153024K"}
    {"index":{}}
    {"gc": "[2021-04-19T15:03:21.735+0000][84408][gc,heap,exit]   class space    used 14503K, capacity 15894K, committed 15948K, reserved 1048576K"}
    {"index":{}}
    {"gc": "[2021-04-19T15:03:21.735+0000][84408][gc,heap,exit]  Metaspace       used 107719K, capacity 111775K, committed 112724K, reserved 1146880K"}
    {"index":{}}
    {"gc": "[2021-04-27T16:16:34.699+0000][82460][gc,heap,exit]  class space  used 266K, capacity 367K, committed 384K, reserved 1048576K"}
    
  • 使用检索语句展示解析数据到运行时字段中

    GET zfc-doc-000010/_search
    {
      "runtime_mappings": {
        "gc_size": {
          "type": "keyword",
          "script": """
            Map gc=dissect('[%{@timestamp}][%{code}][%{desc}]  %{ident} used %{usize}, capacity %{csize}, committed %{comsize}, reserved %{rsize}').extract(doc["gc.keyword"].value);
            if (gc != null) emit("used" + ' ' + gc.usize + ', ' + "capacity" + ' ' + gc.csize + ', ' + "committed" + ' ' + gc.comsize);
          """
        }
      },
      "size": 1,
      "aggs": {
        "sizes": {
          "terms": {
            "field": "gc_size",
            "size": 10
          }
        }
      },
      "fields" : ["gc_size"]
    }
    

通过上面的查询测试可以知道,Elasticsearch 中的 script 默认的时 painless 语言,功能已经非常强大可以满足我们的日常需求,如果还想更高级的脚本,可以使用 Java 语言来编写自己的脚本。关于 Expressions 的表达式的使用就参与官网吧,本文的所有例子均来自官网,并自测完成。如有错误欢迎指出,共同进步。

后面有机会会出现一片使用Java编译脚本的使用,等后面时间吧,最近这段时间听尴尬的,也托更很久了,以后慢慢的都要补上。

2023 最后俩月了,加油。

原文链接

https://www.elastic.co/guide/en/elasticsearch/reference/8.1/modules-scripting.html

本文由 mdnice 多平台发布


http://www.kler.cn/a/108224.html

相关文章:

  • 三正科技笔试题
  • GIS空间分析案例---城市公共设施配置与服务评价
  • 在linux中使用nload实时查看网卡流量
  • ArcGIS Pro属性表乱码与字段名3个汉字解决方案大总结
  • 机器学习day3-KNN算法、模型调优与选择
  • 【金融风控】特征评估与筛选详解
  • 【swagger动态配置输入参数忽略某些字段】
  • 如何确定Apache Kafka的大小和规模
  • Azure - 自动化机器学习AutoML Azure使用详解
  • ruoyi vue前后端分离功能介绍
  • 基于 Redis + Lua 脚本实现分布式锁,确保操作的原子性
  • Web APIs——事件流
  • 【CSDN 每日一练 ★★☆】【字符串】外观数列
  • golang连接池检查连接失败时如何重试
  • Linux网络编程01
  • npm更新包时This operation requires a one-time password.
  • 数学家陶哲轩在形式证明帮助下发现论文中错误
  • moviepy处理手机端图片旋转问题
  • JAVA同城服务智慧养老小程序怎么开发?
  • 企业微信接入芋道SpringBoot项目
  • sql--索引使用
  • sharepoint2016-2019升级到sharepoint订阅版
  • python DevOps
  • uniapp实现瀑布流
  • Android问题笔记四十二:signal 11 (SIGSEGV), code 1 (SEGV_MAPERR) 的解决方法
  • 一个Binder的前生今世 (二):Binder进程和线程的创建