当前位置: 首页 > article >正文

分类预测 | Matlab实现PSO-LSTM-Attention粒子群算法优化长短期记忆神经网络融合注意力机制多特征分类预测

分类预测 | Matlab实现PSO-LSTM-Attention粒子群算法优化长短期记忆神经网络融合注意力机制多特征分类预测

目录

    • 分类预测 | Matlab实现PSO-LSTM-Attention粒子群算法优化长短期记忆神经网络融合注意力机制多特征分类预测
      • 分类效果
      • 基本描述
      • 程序设计
      • 参考资料

分类效果

在这里插入图片描述

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

基本描述

1.Matlab实现PSO-LSTM-Attention粒子群算法优化长短期记忆神经网络融合注意力机制多特征分类预测,运行环境Matlab2023b及以上;
2.优化参数为:学习率,隐含层节点,正则化参数。
3.多特征输入单输出的二分类及多分类模型。程序内注释详细,直接替换数据就可以用;
程序语言为matlab,程序可出分类效果图,迭代优化图,混淆矩阵图;
4.data为数据集,输入12个特征,分四类;main为主程序,其余为函数文件,无需运行,可在下载区获取数据和程序内容。

程序设计

  • 完整程序和数据获取方式:私信博主回复Matlab实现PSO-LSTM-Attention粒子群算法优化长短期记忆神经网络融合注意力机制多特征分类预测
function [gbest,g,Convergence_curve]=PSO(N,T,lb,ub,dim,fobj)
%% 定义粒子群算法参数
% N 种群 T 迭代次数 
%% 随机初始化种群
D=dim;                   %粒子维数
c1=1.5;                 %学习因子1
c2=1.5;                 %学习因子2
w=0.8;                  %惯性权重

Xmax=ub;                %位置最大值
Xmin=lb;               %位置最小值
Vmax=ub;                %速度最大值
Vmin=lb;               %速度最小值
%%
%%%%%%%%%%%%%%%%初始化种群个体(限定位置和速度)%%%%%%%%%%%%%%%%

x=rand(N,D).*(Xmax-Xmin)+Xmin;
v=rand(N,D).*(Vmax-Vmin)+Vmin;
%%%%%%%%%%%%%%%%%%初始化个体最优位置和最优值%%%%%%%%%%%%%%%%%%%
p=x;
pbest=ones(N,1);
for i=1:N
    pbest(i)=fobj(x(i,:)); 
end
%%%%%%%%%%%%%%%%%%%初始化全局最优位置和最优值%%%%%%%%%%%%%%%%%%
g=ones(1,D);
gbest=inf;
for i=1:N
    if(pbest(i)<gbest)
        g=p(i,:);
        gbest=pbest(i);
    end
end
%%%%%%%%%%%按照公式依次迭代直到满足精度或者迭代次数%%%%%%%%%%%%%
for i=1:T
    i
    for j=1:N
        %%%%%%%%%%%%%%更新个体最优位置和最优值%%%%%%%%%%%%%%%%%
        if (fobj(x(j,:))) <pbest(j)
            p(j,:)=x(j,:);
            pbest(j)=fobj(x(j,:)); 

参考资料

[1] https://blog.csdn.net/kjm13182345320/article/details/129036772?spm=1001.2014.3001.5502
[2] https://blog.csdn.net/kjm13182345320/article/details/128690229


http://www.kler.cn/a/131679.html

相关文章:

  • 【教3妹学编程-算法题】高访问员工
  • pytorch 安装 2023年
  • Django框架之视图层
  • C++中sort()函数的greater<int>()参数
  • Android 12 客制化修改初探-Launcher/Settings/Bootanimation
  • CAN总线负载及CANoe查看总线负载率
  • 开源与闭源:驾驭大模型未来的关键决断
  • 开关电源测试之输出暂态响应测试标准及方法详解
  • 【Python 千题 —— 基础篇】输出列表平均值
  • asp.net在线考试系统+sqlserver数据库
  • 【入门篇】1.1 redis 基础数据类型详解和示例
  • homeassiant主题
  • 深入理解Java自定义异常与全局异常处理 @RestControllerAdvice
  • 面试其他注意事项
  • 解决 vue3 element 表格和图片预览样式有冲突
  • Word软件手动安装Zotero插件
  • vmware安装MacOS以及flutter遇到的问题
  • vscode终端npm install报错
  • 【电路笔记】-快速了解无源器件
  • 飞书开发学习笔记(七)-添加机器人及发送webhook消息