MySQL索引特性
文章目录
- 为什么要有索引?
- 认识磁盘
- 磁盘的结构
- 磁盘的盘片结构
- 定位扇区
- 磁盘随机访问 (Random Access)与连续访问 (Sequential Access)
- MySQL与磁盘交互
- 索引的理解
- 测试主键索引
- 索引的原理
- 索引结构是否可以使用其他数据结构
- B树 vs B+树
- 聚簇索引 vs 非聚簇索引
为什么要有索引?
MySQL索引的建立对于MySQL的高效运行是很重要的,索引可以大大提高MySQL的检索速度。
打个比方,如果合理的设计且使用索引的MySQL是一辆兰博基尼的话,那么没有设计和使用索引的MySQL就是一个人力三轮车。
索引的引入,使得查询速度的提高,这种提高是以插入、更新、删除的速度为代价的,这些写操作,增加了大量的IO。所以它的价值,在于提高一个海量数据的检索速度。
常见索引:
- 主键索引(primary key)
- 唯一索引(unique key)
- 普通索引(index)
- 全文索引(fulltext)
案例:构建一个海量数据表,来验证索引带来的查询差异性
drop database if exists `test_index`;
create database if not exists `test_index` default character set utf8;
use `test_index`;
-- 构建一个8000000条记录的数据
-- 产生随机字符串
delimiter $$
create function rand_string(n INT)
returns varchar(255)
begin
declare chars_str varchar(100) default
'abcdefghijklmnopqrstuvwxyzABCDEFJHIJKLMNOPQRSTUVWXYZ';
declare return_str varchar(255) default '';
declare i int default 0;
while i < n do
set return_str =concat(return_str,substring(chars_str,floor(1+rand()*52),1));
set i = i + 1;
end while;
return return_str;
end $$
delimiter ;
-- 产生随机数字
delimiter $$
create function rand_num( )
returns int(5)
begin
declare i int default 0;
set i = floor(10+rand()*500);
return i;
end $$
delimiter ;
-- 创建存储过程,向雇员表添加海量数据
delimiter $$
create procedure insert_emp(in start int(10),in max_num int(10))
begin
declare i int default 0;
set autocommit = 0;
repeat
set i = i + 1;
insert into EMP values ((start+i)
,rand_string(6),'SALESMAN',0001,curdate(),2000,400,rand_num());
until i = max_num
end repeat;
commit;
end $$
delimiter ;
-- 雇员表
CREATE TABLE `EMP` (
`empno` int(6) unsigned zerofill NOT NULL COMMENT '雇员编号',
`ename` varchar(10) DEFAULT NULL COMMENT '雇员姓名',
`job` varchar(9) DEFAULT NULL COMMENT '雇员职位',
`mgr` int(4) unsigned zerofill DEFAULT NULL COMMENT '雇员领导编号',
`hiredate` datetime DEFAULT NULL COMMENT '雇佣时间',
`sal` decimal(7,2) DEFAULT NULL COMMENT '工资月薪',
`comm` decimal(7,2) DEFAULT NULL COMMENT '奖金',
`deptno` int(2) unsigned zerofill DEFAULT NULL COMMENT '部门编号'
);
-- 执行存储过程,添加8000000条记录
call insert_emp(100001, 8000000);
上面的sql创建了test_index数据库,test_index中有一个含有8000000条记录的EMP表,select * from EMP limit 10
查看部分数据:
desc EMP;
查看表结构,EMP表没有创建任何索引:
尝试查询EMP表的记录:
可以发现查询EMP表的记录,由于数据量很大而且EMP没有建立任何索引,每次都需要较长的时间进行查询。
为EMP表建立索引:
由于数据量很大,EMP表在创建索引需要花费较长的时间。
创建索引后尝试查询:
可以发现,索引大大提高了数据库表的查询速度。
认识磁盘
MySQL 给用户提供存储服务,而存储的都是数据,数据在磁盘这个外设当中。 磁盘是计算机中的一个机械设备,相比于计算机其他电子元件,磁盘效率是比较低的,在加上IO本身的特征,如何提高效率,是 MySQL 的一个重要话题。
磁盘的结构
磁盘的盘片结构
在MySQL中创建数据库,本质上是在Linux下创建特定目录,在MySQL中创建数据库表,本质上是在特定的目录下创建特定的文件。数据库文件,本质上就是保存在磁盘的盘片中,也就是上图的一个个小格子中,即扇区。所以找到一个数据库文件,本质上就是在磁盘上找到对应的扇区,就需要能够定位某个盘片中的某些扇区。
定位扇区
- 柱面(磁道): 多盘磁盘,每盘都是双面,大小完全相等。那么同半径的磁道,整体上便构成了一个柱面
- 每个盘面都有一个磁头,那么磁头和盘面的对应关系便是1对1的
定位文件在扇区中的位置,需要知道磁头(Heads)、柱面(Cylinder)(等价于磁道)、扇区(Sector)对应的编号,即可在磁盘中定位所要访问的扇区,这种磁盘定位方式叫做CHS。在实际上硬件使用的是CHS定位方式,但是软件所用的是LBA定位方式,这是一种线性地址,可以抽象成虚拟地址和物理地址的关系,系统会将LBA地址转化成CHS地址,交给硬盘进行数据处理。
❔ 在硬件层面上,我们已经可以定位某一个扇区,那么系统软件和磁盘进行IO交互也是按照扇区(512KB)来进行的吗
- 系统软件和磁盘进行IO交互不是按照扇区(512KB)进行交互的
- 如果系统直接使用硬件提供的数据大小进行交互,那么系统的IO代码就和硬件强相关,如今硬件的发展日新月异,换言之,如果硬件发生变化,系统代码就必须大规模更改,维护成本大
- 512byte作为单次IO的大小太小了,这就意味着系统需要重复读取相同大小的数据,需要多次访问磁盘,效率较低
- 文件系统中,物理内存实际上是被分为一个个4KB的数据块的,文件系统读取磁盘的基本单位,不是扇区,而是数据块,基本单位是4KB
磁盘随机访问 (Random Access)与连续访问 (Sequential Access)
- 随机访问:本次IO所给出的扇区地址和上次IO给出扇区地址不连续,这样的话磁头在两次IO操作之间需要作比较大的移动动作才能重新开始读/写数据。
- 连续访问:如果当次IO给出的扇区地址与上次IO结束的扇区地址是连续的,那磁头就能很快的开始这次IO操作,这样的多个IO操作称为连续访问。
因此尽管相邻的两次IO操作在同一时刻发出,但如果它们的请求的扇区地址相差很大的话也只能称为随机访问,而非连续访问,因为连续访问的连续指的是物理上的连续,而不是时间上的连续。磁盘是通过机械运动进行寻址的,连续访问不需要过多的定位,故效率比较高。
MySQL与磁盘交互
MySQL作为一款应用软件,可以想象成是一种特殊的文件系统,它有着更高频的IO场景,因此为了提高基本的IO效率,MySQL与磁盘交互的基本单位是16KB,这个基本数据单元在MySQL这里也叫做Page
show global status like 'innodb_page_size
查看page大小:
在MySQL进行CRUD时,是需要计算数据的位置的,涉及到计算就需要CPU的参与,根据冯诺依曼体系结构,CPU只和内存打交道,因此MySQL访问数据,不可能直接和磁盘交互,全部需要加载到内存进行访问。
数据库的数据是可能同时存在于内存和磁盘中的,数据在进行CRUD之后发生更改,就需要有对应的刷新策略将数据刷新到磁盘,这就说明MySQL需要较高频次的进行IO操作,为了提高效率,MySQL服务器会在内存中预先开辟一大块空间进行数据缓存,这块空间叫做buffer pool,磁盘的数据会预先加载到buffer pool中,刷新磁盘的数据也是从buffer pool中将数据刷新到磁盘。
数据是不会直接从内存刷新到磁盘的,它们的交互会经过操作系统,操作系统有对应的内核级缓冲区,当MySQL需要从磁盘上加载数据时,数据会先通过磁盘和内核缓冲区进行每次4KB的IO交互,操作系统再通过对应刷新策略,数据从内核缓冲区以每次16KB的IO交互拷贝到buffer pool中。
简化图:
索引的理解
测试主键索引
建立测试表:
插入多条记录:
查看插入结果:
索引的原理
❔ 可以发现,插入数据的时候并没有按照主键的顺序进行插入,但是插入多条数据后,结果默认就是有序的,这是为什么?
MySQL中需要管理很多的数据,管理这些数据就需要先描述,再组织,MySQL中有一个个的Page结构体,用来存放数据,MySQL中存在很多Page结构体,它们通过两个指针构成双向链表。
伪代码:
struct Page
{
struct Page* page_prev;
struct Page* page_next;
char buffer[]
};
在插入数据时排序,是为了优化链表增删改效率高,查询效率低的特点。但是当Page内的数据越来越多时,在页内查找也还是线性查找,于是数据库在插入时,进行排序,是为了便于建立Page中的目录。在单个Page中引入页内目录,将Page中数据分为若干区域,目录中存储这些区域中主键的最小值。
引入目录后,MySQL在进行查找时,预先查找目录中的内容,对于插入数据的主键处于目录的哪一个区间,从而到区间中查找,大大提高了在单个Page中查找数据的效率。
MySQL在单个Page中引入目录,大大提高了再单个Page中的查找效率,但是当数据量很大时,MySQL中存在很多Page,这些Page也是通过链表的形式连接起来的,所以在数据量很大时,在多个Page中查找也是线性遍历。
❔ MySQL是怎么处理这种情况,提高效率的呢
按照单个Page内创建目录的思路,给多个Page也带上目录,每一个目录项的构成是 Page中最小主键值 和 指向该Page的指针,与页内目录不同,这个目录管理的级别是Page页,页内目录管理的级别是一条记录
当第二层的Page逐渐增多时,可以再添加一层Page管理下层Page,依次类推,就构成了B+树的结构。通过B+树的结构,可以提高查找的效率,减少将过多Page加载到内存中,减少和磁盘的IO次数。
总结:
- Page分为目录页和数据页。目录页只放各个下级Page的最小键值
- 查找的时候,自定向下找,只需要加载部分目录页到内存,即可完成算法的整个查找过程,大大减少了IO次数
索引结构是否可以使用其他数据结构
❔ InnoDB 在建立索引结构来管理数据的时候,其他数据结构为何不行
- 链表:查找是线性遍历
- 二叉搜索树:可能退化成链表的线性结构,查找是线性遍历
- AVL数和红黑树:虽然树形结构是平衡或者近似平衡的,但是该结构还是二叉树结构,这就意味着AVL树和红黑树的结构会比较高,查询数据是自顶向下查找,这就意味着要遍历更多的结点,就需要经历多次IO
B树 vs B+树
B树:
B+树:
- B树节点,既有数据,又有Page指针,而B+只有叶子节点有数据,其他目录页,只有键值和Page指针
- B+树叶子节点是以链表连接起来的,而B树没有相连
❔ 为什么选择B+树
- B+树的结点中只有叶子结点存储数据,而B树的全部结点都存储数据,这样一来,B+树的高度比B树的高度要低,查找的次数也会减少
- B+树的结点以链表的形式相连,B树没有,在范围查找的时候,B+树的效率比B树高
聚簇索引 vs 非聚簇索引
MyISAM 引擎同样使用B+树作为索引结果,叶节点的data域存放的是数据记录的地址。下图为 MyISAM 表的主索引,Col1 为主键。
其中, MyISAM 最大的特点是,将索引Page和数据Page分离,也就是叶子节点没有数据,只有对应数据的地址。相较于 InnoDB 索引, InnoDB 是将索引和数据放在一起的
下图是InnoDB索引结构,以Col3为主键:
其中, InnoDB 这种用户数据与索引数据在一起索引方案,叫做聚簇索引,MyISAM 这种用户数据与索引数据分离的索引方案,叫做非聚簇索引。
测试:
- innodb_test.frm: 存放的是表结构数据
- innodb_test.ibd: 存放的是索引和用户数据
- myisam_test.frm: 存放的是表结构数据
- myisam_test.MYD: 存放的是表的用户数据
- myisam_test.MYI: 存放的是表的索引数据