当前位置: 首页 > article >正文

竞赛 题目:基于深度学习的人脸表情识别 - 卷积神经网络 竞赛项目 代码

文章目录

  • 0 简介
  • 1 项目说明
  • 2 数据集介绍:
  • 3 思路分析及代码实现
    • 3.1 数据可视化
    • 3.2 数据分离
    • 3.3 数据可视化
    • 3.4 在pytorch下创建数据集
      • 3.4.1 创建data-label对照表
      • 3.4.2 重写Dataset类
      • 3.4.3 数据集的使用
  • 4 网络模型搭建
    • 4.1 训练模型
    • 4.2 模型的保存与加载
  • 5 相关源码
  • 6 最后

0 简介

🔥 优质竞赛项目系列,今天要分享的是

基于深度学习的人脸表情识别

该项目较为新颖,适合作为竞赛课题方向,学长非常推荐!

🧿 更多资料, 项目分享:

https://gitee.com/dancheng-senior/postgraduate

1 项目说明

给定数据集train.csv,要求使用卷积神经网络CNN,根据每个样本的面部图片判断出其表情。在本项目中,表情共分7类,分别为:(0)生气,(1)厌恶,(2)恐惧,(3)高兴,(4)难过,(5)惊讶和(6)中立(即面无表情,无法归为前六类)。所以,本项目实质上是一个7分类问题。

在这里插入图片描述

在这里插入图片描述

2 数据集介绍:

  • (1)、CSV文件,大小为28710行X2305列;

  • (2)、在28710行中,其中第一行为描述信息,即“label”和“feature”两个单词,其余每行内含有一个样本信息,即共有28709个样本;

  • (3)、在2305列中,其中第一列为该样本对应的label,取值范围为0到6。其余2304列为包含着每个样本大小为48X48人脸图片的像素值(2304=48X48),每个像素值取值范围在0到255之间;

在这里插入图片描述

3 思路分析及代码实现

给定的数据集是csv格式的,考虑到图片分类问题的常规做法,决定先将其全部可视化,还原为图片文件再送进模型进行处理。

借助深度学习框架Pytorch1.0 CPU(穷逼)版本,搭建模型,由于需用到自己的数据集,因此我们需要重写其中的数据加载部分,其余用现成的API即可。

学长这里使用CNN实现功能,因此基本只能在调参阶段自由发挥(不要鄙视调参,参数也不是人人都能调得好的,比如我)。

3.1 数据可视化

我们需要将csv中的像素数据还原为图片并保存下来,在python环境下,很多库都能实现类似的功能,如pillow,opencv等。由于笔者对opencv较为熟悉,且opencv又是专业的图像处理库,因此决定采用opencv实现这一功能

3.2 数据分离

原文件中,label和人脸像素数据是集中在一起的。为了方便操作,决定利用pandas库进行数据分离,即将所有label
读出后,写入新创建的文件label.csv;将所有的像素数据读出后,写入新创建的文件data.csv。

# 将label和像素数据分离
import pandas as pd

# 修改为train.csv在本地的相对或绝对地址
path = './/ml2019spring-hw3//train.csv'
# 读取数据
df = pd.read_csv(path)
# 提取label数据
df_y = df[['label']]
# 提取feature(即像素)数据
df_x = df[['feature']]
# 将label写入label.csv
df_y.to_csv('label.csv', index=False, header=False)
# 将feature数据写入data.csv
df_x.to_csv('data.csv', index=False, header=False)

以上代码执行完毕后,在该代码脚本所在的文件夹下,就会生成两个新文件label.csv以及data.csv。在执行代码前,注意修改train.csv在本地的路径。

在这里插入图片描述

3.3 数据可视化

将数据分离后,人脸像素数据全部存储在data.csv文件中,其中每行数据就是一张人脸。按行读取数据,利用opencv将每行的2304个数据恢复为一张48X48的人脸图片,并保存为jpg格式。在保存这些图片时,将第一行数据恢复出的人脸命名为0.jpg,第二行的人脸命名为1.jpg…,以方便与label[0]、label[1]…一一对应。

import cv2
import numpy as np

# 指定存放图片的路径
path = './/face'
# 读取像素数据
data = np.loadtxt('data.csv')

# 按行取数据
for i in range(data.shape[0]):
    face_array = data[i, :].reshape((48, 48)) # reshape
    cv2.imwrite(path + '//' + '{}.jpg'.format(i), face_array) # 写图片

以上代码虽短,但涉及到大量数据的读取和大批图片的写入,因此占用的内存资源较多,且执行时间较长(视机器性能而定,一般要几分钟到十几分钟不等)。代码执行完毕,我们来到指定的图片存储路径,就能发现里面全部是写好的人脸图片。

粗略浏览一下这些人脸图片,就能发现这些图片数据来源较广,且并不纯净。就前60张图片而言,其中就包含了正面人脸,如1.jpg;侧面人脸,如18.jpg;倾斜人脸,如16.jpg;正面人头,如7.jpg;正面人上半身,如55.jpg;动漫人脸,如38.jpg;以及毫不相关的噪声,如59.jpg。放大图片后仔细观察,还会发现不少图片上还有水印。种种因素均给识别提出了严峻的挑战。

在这里插入图片描述

3.4 在pytorch下创建数据集

现在我们有了图片,但怎么才能把图片读取出来送给模型呢?

最简单粗暴的方法就是直接用opencv将所有图片读取出来,以numpy中array的数据格式直接送给模型。如果这样做的话,会一次性把所有图片全部读入内存,占用大量的内存空间,且只能使用单线程,效率不高,也不方便后续操作。

其实在pytorch中,有一个类(torch.utils.data.Dataset)是专门用来加载数据的,我们可以通过继承这个类来定制自己的数据集和加载方法。以下为基本流程。

3.4.1 创建data-label对照表

首先,我们需要划分一下训练集和验证集。在本次作业中,共有28709张图片,取前24000张图片作为训练集,其他图片作为验证集。新建文件夹train和val,将0.jpg到23999.jpg放进文件夹train,将其他图片放进文件夹val。

在继承torch.utils.data.Dataset类定制自己的数据集时,由于在数据加载过程中需要同时加载出一个样本的数据及其对应的label,因此最好能建立一个data-
label对照表,其中记录着data和label的对应关系(“data-lable对照表”并非官方名词,这个技术流程是

有童鞋看到这里就会提出疑问了:在人脸可视化过程中,每张图片的命名不都和label的存放顺序是一一对应关系吗,为什么还要多此一举,再重新建立data-
label对照表呢?笔者在刚开始的时候也是这么想的,按顺序(0.jpg, 1.jpg, 2.jpg…)加载图片和label(label[0],
label[1],
label[2]…),岂不是方便、快捷又高效?结果在实际操作的过程中才发现,程序加载文件的机制是按照文件名首字母(或数字)来的,即加载次序是0,1,10,100…,而不是预想中的0,1,2,3…,因此加载出来的图片不能够和label[0],label[1],lable[2],label[3]…一一对应,所以建立data-
label对照表还是相当有必要的。

建立data-
label对照表的基本思路就是:指定文件夹(train或val),遍历该文件夹下的所有文件,如果该文件是.jpg格式的图片,就将其图片名写入一个列表,同时通过图片名索引出其label,将其label写入另一个列表。最后利用pandas库将这两个列表写入同一个csv文件。

执行这段代码前,注意修改相关文件路径。代码执行完毕后,会在train和val文件夹下各生成一个名为dataset.csv的data-label对照表。



    import os
    import pandas as pd
    
    def data_label(path):
        # 读取label文件
        df_label = pd.read_csv('label.csv', header = None)
        # 查看该文件夹下所有文件
        files_dir = os.listdir(path)
        # 用于存放图片名
        path_list = []
        # 用于存放图片对应的label
        label_list = []
        # 遍历该文件夹下的所有文件
        for file_dir in files_dir:
            # 如果某文件是图片,则将其文件名以及对应的label取出,分别放入path_list和label_list这两个列表中
            if os.path.splitext(file_dir)[1] == ".jpg":
                path_list.append(file_dir)
                index = int(os.path.splitext(file_dir)[0])
                label_list.append(df_label.iat[index, 0])
    
        # 将两个列表写进dataset.csv文件
        path_s = pd.Series(path_list)
        label_s = pd.Series(label_list)
        df = pd.DataFrame()
        df['path'] = path_s
        df['label'] = label_s
        df.to_csv(path+'\\dataset.csv', index=False, header=False)

    def main():
        # 指定文件夹路径
        train_path = 'F:\\0gold\\ML\\LHY_class\\FaceData\\train'
        val_path = 'F:\\0gold\\ML\\LHY_class\\FaceData\\val'
        data_label(train_path)
        data_label(val_path)
    
    if __name__ == "__main__":
        main()

OK,代码执行完毕,让我们来看一看data-label对照表里面具体是什么样子吧!

在这里插入图片描述

3.4.2 重写Dataset类

首先介绍一下Pytorch中Dataset类:Dataset类是Pytorch中图像数据集中最为重要的一个类,也是Pytorch中所有数据集加载类中应该继承的父类。其中父类中的两个私有成员函数getitem()和len()必须被重载,否则将会触发错误提示。其中getitem()可以通过索引获取数据,len()可以获取数据集的大小。在Pytorch源码中,Dataset类的声明如下:

class Dataset(object):
    """An abstract class representing a Dataset.

    All other datasets should subclass it. All subclasses should override
    ``__len__``, that provides the size of the dataset, and ``__getitem__``,
    supporting integer indexing in range from 0 to len(self) exclusive.
    """

    def __getitem__(self, index):
        raise NotImplementedError

    def __len__(self):
        raise NotImplementedError

    def __add__(self, other):py
        return ConcatDataset([self, other])

我们通过继承Dataset类来创建我们自己的数据加载类,命名为FaceDataset。

import torch
from torch.utils import data
import numpy as np
import pandas as pd
import cv2

class FaceDataset(data.Dataset):

首先要做的是类的初始化。之前的data-label对照表已经创建完毕,在加载数据时需用到其中的信息。因此在初始化过程中,我们需要完成对data-
label对照表中数据的读取工作。

通过pandas库读取数据,随后将读取到的数据放入list或numpy中,方便后期索引。

# 初始化
def __init__(self, root):
    super(FaceDataset, self).__init__()
    # root为train或val文件夹的地址
    self.root = root
    # 读取data-label对照表中的内容
    df_path = pd.read_csv(root + '\\dataset.csv', header=None, usecols=[0]) # 读取第一列文件名
    df_label = pd.read_csv(root + '\\dataset.csv', header=None, usecols=[1]) # 读取第二列label
    # 将其中内容放入numpy,方便后期索引
    self.path = np.array(df_path)[:, 0]
    self.label = np.array(df_label)[:, 0]

接着就要重写getitem()函数了,该函数的功能是加载数据。在前面的初始化部分,我们已经获取了所有图片的地址,在这个函数中,我们就要通过地址来读取数据。

由于是读取图片数据,因此仍然借助opencv库。需要注意的是,之前可视化数据部分将像素值恢复为人脸图片并保存,得到的是3通道的灰色图(每个通道都完全一样),而在这里我们只需要用到单通道,因此在图片读取过程中,即使原图本来就是灰色的,但我们还是要加入参数从cv2.COLOR_BGR2GARY,保证读出来的数据是单通道的。读取出来之后,可以考虑进行一些基本的图像处理操作,如通过高斯模糊降噪、通过直方图均衡化来增强图像等(经试验证明,在本次作业中,直方图均衡化并没有什么卵用,而高斯降噪甚至会降低正确率,可能是因为图片分辨率本来就较低,模糊后基本上什么都看不清了吧)。读出的数据是48X48的,而后续卷积神经网络中nn.Conv2d()
API所接受的数据格式是(batch_size, channel, width, higth),本次图片通道为1,因此我们要将48X48
reshape为1X48X48。

# 读取某幅图片,item为索引号
def __getitem__(self, item):
    face = cv2.imread(self.root + '\\' + self.path[item])
    # 读取单通道灰度图
    face_gray = cv2.cvtColor(face, cv2.COLOR_BGR2GRAY)
    # 高斯模糊
    # face_Gus = cv2.GaussianBlur(face_gray, (3,3), 0)
    # 直方图均衡化
    face_hist = cv2.equalizeHist(face_gray)
    # 像素值标准化
    face_normalized = face_hist.reshape(1, 48, 48) / 255.0 # 为与pytorch中卷积神经网络API的设计相适配,需reshape原图
    # 用于训练的数据需为tensor类型
    face_tensor = torch.from_numpy(face_normalized) # 将python中的numpy数据类型转化为pytorch中的tensor数据类型
    face_tensor = face_tensor.type('torch.FloatTensor') # 指定为'torch.FloatTensor'型,否则送进模型后会因数据类型不匹配而报错
    label = self.label[item]
    return face_tensor, label

最后就是重写len()函数获取数据集大小了。self.path中存储着所有的图片名,获取self.path第一维的大小,即为数据集的大小。



    1 # 获取数据集样本个数
    2 def __len__(self):
    3     return self.path.shape[0]

    class FaceDataset(data.Dataset):
        # 初始化
        def __init__(self, root):
            super(FaceDataset, self).__init__()
            self.root = root
            df_path = pd.read_csv(root + '\\dataset.csv', header=None, usecols=[0])
            df_label = pd.read_csv(root + '\\dataset.csv', header=None, usecols=[1])
            self.path = np.array(df_path)[:, 0]
            self.label = np.array(df_label)[:, 0]
    
        # 读取某幅图片,item为索引号
        def __getitem__(self, item):
            face = cv2.imread(self.root + '\\' + self.path[item])
            # 读取单通道灰度图
            face_gray = cv2.cvtColor(face, cv2.COLOR_BGR2GRAY)
            # 高斯模糊
            # face_Gus = cv2.GaussianBlur(face_gray, (3,3), 0)
            # 直方图均衡化
            face_hist = cv2.equalizeHist(face_gray)
            # 像素值标准化
            face_normalized = face_hist.reshape(1, 48, 48) / 255.0 # 为与pytorch中卷积神经网络API的设计相适配,需reshape原图
            # 用于训练的数据需为tensor类型
            face_tensor = torch.from_numpy(face_normalized) # 将python中的numpy数据类型转化为pytorch中的tensor数据类型
            face_tensor = face_tensor.type('torch.FloatTensor') # 指定为'torch.FloatTensor'型,否则送进模型后会因数据类型不匹配而报错
            label = self.label[item]
            return face_tensor, label
    
        # 获取数据集样本个数
        def __len__(self):
            return self.path.shape[0]


3.4.3 数据集的使用

到此为止,我们已经成功地写好了自己的数据集加载类。那么这个类该如何使用呢?下面笔者将以训练集(train文件夹下的数据)加载为例,讲一下整个数据集加载类在模型训练过程中的使用方法。

首先,我们需要将这个类实例化。

1 # 数据集实例化(创建数据集)
2 train_dataset = FaceDataset(root='E:\\WSD\\HW3\\FaceData\\train')

train_dataset即为我们实例化的训练集,要想加载其中的数据,还需要DataLoader类的辅助。DataLoader类总是配合Dataset类一起使用,DataLoader类可以帮助我们分批次读取数据,也可以通过这个类选择读取数据的方式(顺序
or 随机乱序),还可以选择并行加载数据等,这个类并不要我们重写。

1 # 载入数据并分割batch
2 train_loader = data.DataLoader(train_dataset, batch_size)

最后,我们就能直接从train_loader中直接加载出数据和label了,而且每次都会加载出一个批次(batch)的数据和label。

1 for images, labels in train_loader:
2     '''
3     通过images和labels训练模型
4     '''

4 网络模型搭建

通过Pytorch搭建基于卷积神经网络的分类器。刚开始是自己设计的网络模型,在训练时发现准确度一直上不去,折腾一周后走投无路,后来在github上找到了一个做表情识别的开源项目,用的是这个项目的模型结构,但还是没能达到项目中的精度(acc在74%)。下图为该开源项目中公布的两个模型结构,笔者用的是Model
B ,且只采用了其中的卷积-全连接部分,如果大家希望进一步提高模型的表现能力,可以考虑向模型中添加Face landmarks + HOG features
部分。

可以看出,在Model B
的卷积部分,输入图片shape为48X48X1,经过一个3X3X64卷积核的卷积操作,再进行一次2X2的池化,得到一个24X24X64的feature
map 1(以上卷积和池化操作的步长均为1,每次卷积前的padding为1,下同)。将feature map
1经过一个3X3X128卷积核的卷积操作,再进行一次2X2的池化,得到一个12X12X128的feature map 2。将feature map
2经过一个3X3X256卷积核的卷积操作,再进行一次2X2的池化,得到一个6X6X256的feature map
3。卷积完毕,数据即将进入全连接层。进入全连接层之前,要进行数据扁平化,将feature map
3拉一个成长度为6X6X256=9216的一维tensor。随后数据经过dropout后被送进一层含有4096个神经元的隐层,再次经过dropout后被送进一层含有1024个神经元的隐层,之后经过一层含256个神经元的隐层,最终经过含有7个神经元的输出层。一般再输出层后都会加上softmax层,取概率最高的类别为分类结果。

在这里插入图片描述

我们可以通过继承nn.Module来定义自己的模型类。以下代码实现了上述的模型结构。需要注意的是,在代码中,数据经过最后含7个神经元的线性层后就直接输出了,并没有经过softmax层。这是为什么呢?其实这和Pytorch在这一块的设计机制有关。因为在实际应用中,softmax层常常和交叉熵这种损失函数联合使用,因此Pytorch在设计时,就将softmax运算集成到了交叉熵损失函数CrossEntropyLoss()内部,如果使用交叉熵作为损失函数,就默认在计算损失函数前自动进行softmax操作,不需要我们额外加softmax层。Tensorflow也有类似的机制。

class FaceCNN(nn.Module):
    # 初始化网络结构
    def __init__(self):
        super(FaceCNN, self).__init__()

        # 第一次卷积、池化
        self.conv1 = nn.Sequential(
            # 输入通道数in_channels,输出通道数(即卷积核的通道数)out_channels,卷积核大小kernel_size,步长stride,对称填0行列数padding
            # input:(bitch_size, 1, 48, 48), output:(bitch_size, 64, 48, 48), (48-3+2*1)/1+1 = 48
            nn.Conv2d(in_channels=1, out_channels=64, kernel_size=3, stride=1, padding=1), # 卷积层
            nn.BatchNorm2d(num_features=64), # 归一化
            nn.RReLU(inplace=True), # 激活函数
            # output(bitch_size, 64, 24, 24)
            nn.MaxPool2d(kernel_size=2, stride=2), # 最大值池化
        )

        # 第二次卷积、池化
        self.conv2 = nn.Sequential(
            # input:(bitch_size, 64, 24, 24), output:(bitch_size, 128, 24, 24), (24-3+2*1)/1+1 = 24
            nn.Conv2d(in_channels=64, out_channels=128, kernel_size=3, stride=1, padding=1),
            nn.BatchNorm2d(num_features=128),
            nn.RReLU(inplace=True),
            # output:(bitch_size, 128, 12 ,12)
            nn.MaxPool2d(kernel_size=2, stride=2),
        )

        # 第三次卷积、池化
        self.conv3 = nn.Sequential(
            # input:(bitch_size, 128, 12, 12), output:(bitch_size, 256, 12, 12), (12-3+2*1)/1+1 = 12
            nn.Conv2d(in_channels=128, out_channels=256, kernel_size=3, stride=1, padding=1),
            nn.BatchNorm2d(num_features=256),
            nn.RReLU(inplace=True),
            # output:(bitch_size, 256, 6 ,6)
            nn.MaxPool2d(kernel_size=2, stride=2),
        )

        # 参数初始化
        self.conv1.apply(gaussian_weights_init)
        self.conv2.apply(gaussian_weights_init)
        self.conv3.apply(gaussian_weights_init)

        # 全连接层
        self.fc = nn.Sequential(
            nn.Dropout(p=0.2),
            nn.Linear(in_features=256*6*6, out_features=4096),
            nn.RReLU(inplace=True),
            nn.Dropout(p=0.5),
            nn.Linear(in_features=4096, out_features=1024),
            nn.RReLU(inplace=True),
            nn.Linear(in_features=1024, out_features=256),
            nn.RReLU(inplace=True),
            nn.Linear(in_features=256, out_features=7),
        )

    # 前向传播
    def forward(self, x):
        x = self.conv1(x)
        x = self.conv2(x)
        x = self.conv3(x)
        # 数据扁平化
        x = x.view(x.shape[0], -1)
        y = self.fc(x)
        return y

4.1 训练模型

有了模型,就可以通过数据的前向传播和误差的反向传播来训练模型了。在此之前,还需要指定优化器(即学习率更新的方式)、损失函数以及训练轮数、学习率等超参数。

在本次作业中,我们采用的优化器是SGD,即随机梯度下降,其中参数weight_decay为正则项系数;损失函数采用的是交叉熵;可以考虑使用学习率衰减。

def train(train_dataset, batch_size, epochs, learning_rate, wt_decay):
    # 载入数据并分割batch
    train_loader = data.DataLoader(train_dataset, batch_size)
    # 构建模型
    model = FaceCNN()
    # 损失函数
    loss_function = nn.CrossEntropyLoss()
    # 优化器
    optimizer = optim.SGD(model.parameters(), lr=learning_rate, weight_decay=wt_decay)
    # 学习率衰减
    # scheduler = optim.lr_scheduler.StepLR(optimizer, step_size=10, gamma=0.8)
    # 逐轮训练
    for epoch in range(epochs):
        # 记录损失值
        loss_rate = 0
        # scheduler.step() # 学习率衰减
        model.train() # 模型训练
        for images, labels in train_loader:
            # 梯度清零
            optimizer.zero_grad()
            # 前向传播
            output = model.forward(images)
            # 误差计算
            loss_rate = loss_function(output, labels)
            # 误差的反向传播
            loss_rate.backward()
            # 更新参数
            optimizer.step()

4.2 模型的保存与加载

我们训练的这个模型相对较小,因此可以直接保存整个模型(包括结构和参数)。

# 模型保存
torch.save(model, 'model_net1.pkl')
# 模型加载
model_parm =  'model_net1.pkl'
model = torch.load(net_parm)

5 相关源码

代码在CPU上跑起来较慢,视超参数和机器性能不同,一般跑完需耗时几小时到几十小时不等。代码执行时,每轮输出一次损失值,每5轮输出一次在训练集和验证集上的正确率。有条件的可以在GPU上尝试。



    import torch
    import torch.utils.data as data
    import torch.nn as nn
    import torch.optim as optim
    import numpy as np
    import pandas as pd
    import cv2
    
    # 参数初始化
    def gaussian_weights_init(m):
        classname = m.__class__.__name__
        # 字符串查找find,找不到返回-1,不等-1即字符串中含有该字符
        if classname.find('Conv') != -1:
            m.weight.data.normal_(0.0, 0.04)
    
    # 人脸旋转,尝试过但效果并不好,本次并未用到
    def imgProcess(img):
        # 通道分离
        (b, g, r) = cv2.split(img)
        # 直方图均衡化
        bH = cv2.equalizeHist(b)
        gH = cv2.equalizeHist(g)
        rH = cv2.equalizeHist(r)
    
        # 顺时针旋转15度矩阵
        M0 = cv2.getRotationMatrix2D((24,24),15,1)
        # 逆时针旋转15度矩阵
        M1 = cv2.getRotationMatrix2D((24,24),15,1)
        # 旋转
        gH = cv2.warpAffine(gH, M0, (48, 48))
        rH = cv2.warpAffine(rH, M1, (48, 48))
        # 通道合并
        img_processed = cv2.merge((bH, gH, rH))
        return img_processed
    
    # 验证模型在验证集上的正确率
    def validate(model, dataset, batch_size):
        val_loader = data.DataLoader(dataset, batch_size)
        result, num = 0.0, 0
        for images, labels in val_loader:
            pred = model.forward(images)
            pred = np.argmax(pred.data.numpy(), axis=1)
            labels = labels.data.numpy()
            result += np.sum((pred == labels))
            num += len(images)
        acc = result / num
        return acc
    
    class FaceDataset(data.Dataset):
        # 初始化
        def __init__(self, root):
            super(FaceDataset, self).__init__()
            self.root = root
            df_path = pd.read_csv(root + '\\dataset.csv', header=None, usecols=[0])
            df_label = pd.read_csv(root + '\\dataset.csv', header=None, usecols=[1])
            self.path = np.array(df_path)[:, 0]
            self.label = np.array(df_label)[:, 0]
    
        # 读取某幅图片,item为索引号
        def __getitem__(self, item):
            # 图像数据用于训练,需为tensor类型,label用numpy或list均可
            face = cv2.imread(self.root + '\\' + self.path[item])
            # 读取单通道灰度图
            face_gray = cv2.cvtColor(face, cv2.COLOR_BGR2GRAY)
            # 高斯模糊
            # face_Gus = cv2.GaussianBlur(face_gray, (3,3), 0)
            # 直方图均衡化
            face_hist = cv2.equalizeHist(face_gray)
            # 像素值标准化
            face_normalized = face_hist.reshape(1, 48, 48) / 255.0
            face_tensor = torch.from_numpy(face_normalized)
            face_tensor = face_tensor.type('torch.FloatTensor')
            label = self.label[item]
            return face_tensor, label
    
        # 获取数据集样本个数
        def __len__(self):
            return self.path.shape[0]
    
    class FaceCNN(nn.Module):
        # 初始化网络结构
        def __init__(self):
            super(FaceCNN, self).__init__()
    
            # 第一次卷积、池化
            self.conv1 = nn.Sequential(
                # 输入通道数in_channels,输出通道数(即卷积核的通道数)out_channels,卷积核大小kernel_size,步长stride,对称填0行列数padding
                # input:(bitch_size, 1, 48, 48), output:(bitch_size, 64, 48, 48), (48-3+2*1)/1+1 = 48
                nn.Conv2d(in_channels=1, out_channels=64, kernel_size=3, stride=1, padding=1), # 卷积层
                nn.BatchNorm2d(num_features=64), # 归一化
                nn.RReLU(inplace=True), # 激活函数
                # output(bitch_size, 64, 24, 24)
                nn.MaxPool2d(kernel_size=2, stride=2), # 最大值池化
            )
    
            # 第二次卷积、池化
            self.conv2 = nn.Sequential(
                # input:(bitch_size, 64, 24, 24), output:(bitch_size, 128, 24, 24), (24-3+2*1)/1+1 = 24
                nn.Conv2d(in_channels=64, out_channels=128, kernel_size=3, stride=1, padding=1),
                nn.BatchNorm2d(num_features=128),
                nn.RReLU(inplace=True),
                # output:(bitch_size, 128, 12 ,12)
                nn.MaxPool2d(kernel_size=2, stride=2),
            )
    
            # 第三次卷积、池化
            self.conv3 = nn.Sequential(
                # input:(bitch_size, 128, 12, 12), output:(bitch_size, 256, 12, 12), (12-3+2*1)/1+1 = 12
                nn.Conv2d(in_channels=128, out_channels=256, kernel_size=3, stride=1, padding=1),
                nn.BatchNorm2d(num_features=256),
                nn.RReLU(inplace=True),
                # output:(bitch_size, 256, 6 ,6)
                nn.MaxPool2d(kernel_size=2, stride=2),
            )
    
            # 参数初始化
            self.conv1.apply(gaussian_weights_init)
            self.conv2.apply(gaussian_weights_init)
            self.conv3.apply(gaussian_weights_init)
    
            # 全连接层
            self.fc = nn.Sequential(
                nn.Dropout(p=0.2),
                nn.Linear(in_features=256*6*6, out_features=4096),
                nn.RReLU(inplace=True),
                nn.Dropout(p=0.5),
                nn.Linear(in_features=4096, out_features=1024),
                nn.RReLU(inplace=True),
                nn.Linear(in_features=1024, out_features=256),
                nn.RReLU(inplace=True),
                nn.Linear(in_features=256, out_features=7),
            )
    
        # 前向传播
        def forward(self, x):
            x = self.conv1(x)
            x = self.conv2(x)
            x = self.conv3(x)
            # 数据扁平化
            x = x.view(x.shape[0], -1)
            y = self.fc(x)
            return y
    
    def train(train_dataset, val_dataset, batch_size, epochs, learning_rate, wt_decay):
        # 载入数据并分割batch
        train_loader = data.DataLoader(train_dataset, batch_size)
        # 构建模型
        model = FaceCNN()
        # 损失函数
        loss_function = nn.CrossEntropyLoss()
        # 优化器
        optimizer = optim.SGD(model.parameters(), lr=learning_rate, weight_decay=wt_decay)
        # 学习率衰减
        # scheduler = optim.lr_scheduler.StepLR(optimizer, step_size=10, gamma=0.8)
        # 逐轮训练
        for epoch in range(epochs):
            # 记录损失值
            loss_rate = 0
            # scheduler.step() # 学习率衰减
            model.train() # 模型训练
            for images, labels in train_loader:
                # 梯度清零
                optimizer.zero_grad()
                # 前向传播
                output = model.forward(images)
                # 误差计算
                loss_rate = loss_function(output, labels)
                # 误差的反向传播
                loss_rate.backward()
                # 更新参数
                optimizer.step()
    
            # 打印每轮的损失
            print('After {} epochs , the loss_rate is : '.format(epoch+1), loss_rate.item())
            if epoch % 5 == 0:
                model.eval() # 模型评估
                acc_train = validate(model, train_dataset, batch_size)
                acc_val = validate(model, val_dataset, batch_size)
                print('After {} epochs , the acc_train is : '.format(epoch+1), acc_train)
                print('After {} epochs , the acc_val is : '.format(epoch+1), acc_val)
    
        return model
    
    def main():
        # 数据集实例化(创建数据集)
        train_dataset = FaceDataset(root='E:\\WSD\\HW3\\FaceData\\train')
        val_dataset = FaceDataset(root='E:\\WSD\\HW3\\FaceData\\val')
        # 超参数可自行指定
        model = train(train_dataset, val_dataset, batch_size=128, epochs=100, learning_rate=0.1, wt_decay=0)
        # 保存模型
        torch.save(model, 'model_net1.pkl')


    if __name__ == '__main__':
        main()

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

6 最后

🧿 更多资料, 项目分享:

https://gitee.com/dancheng-senior/postgraduate


http://www.kler.cn/a/136165.html

相关文章:

  • HTTPS SSL/TLS 工作流程
  • Element-plus、Element-ui之Tree 树形控件回显Bug问题。
  • C# XPTable 日期字段处理(XPTable控件使用说明十三)
  • 代码随想录算法训练营第三十二天|509.斐波那契数、70.爬楼梯、746.使用最小花费爬楼梯
  • 太原理工大学软件设计与体系结构 --javaEE
  • C++:拷贝构造函数,深拷贝,浅拷贝
  • 第十七篇-Awesome ChatGPT Prompts-备份-百度翻译
  • Android 电量优化概览
  • redis非关系型数据库(缓存型数据库)——中间件
  • vue3父组件提交校验多个子组件
  • Excel自定义函数提取超链接
  • qt treeview 删除节点
  • Python数据结构——Tuple
  • 壹基金宣传进瑞金河背街社区 安全家园项目防灾减灾深入人心
  • WPF 控件的缩放和移动
  • IntelliJ IDEA 2023 v2023.2.5
  • Windows 安装 Docker Compose
  • Spark算子 - Python
  • 基于ResNet框架的CNN
  • 使用rustc_interface进行类型检查
  • 机器人制作开源方案 | 钻孔植树一体化沙漠车
  • Mongodb命名和文档限制
  • 猫12分类:使用yolov5训练检测模型
  • gitlab利用CI多工程持续构建
  • 2311d导入c的语义不同