当前位置: 首页 > article >正文

生产环境_移动目标轨迹压缩应用和算法处理-Douglas-Peucker轨迹压缩算法

场景:

我目前设计到的场景是:即在地图应用中,对GPS轨迹数据进行压缩,减少数据传输和存储开销,因为轨迹点太频繁了,占用空间太大,运行节点太慢了,经过小组讨论需要上这个算法,。

涉及到的算法

  1. Douglas-Peucker算法:该算法通过递归地将轨迹分割为线段,并丢弃那些与整体轨迹偏差较小的线段,从而实现轨迹的压缩。
    1. Visvalingam-Whyatt算法:该算法基于三角形面积的概念,通过不断移除面积最小的点来达到轨迹压缩的目的

                                图片来源:郑宇博士《computing with spatial trajectories》

Haversine公式计算距离和Douglas-Peucker压缩算法代码实现-scala版

import org.apache.spark.sql.{DataFrame, SparkSession}
import org.apache.spark.sql.functions._
import scala.math._

// 定义表示点的类
case class Point(lon: Double, lat: Double, time: String, id: String)

// Haversine距离计算函数
def haversineDistance(point1: Point, point2: Point): Double = {
  val R = 6371000.0 // 地球半径(米)
  val dLat = toRadians(point2.lat - point1.lat)
  val dLon = toRadians(point2.lon - point1.lon)
  val a = pow(sin(dLat / 2), 2) + cos(toRadians(point1.lat)) * cos(toRadians(point2.lat)) * pow(sin(dLon / 2), 2)
  val c = 2 * atan2(sqrt(a), sqrt(1 - a))
  R * c
}

// Douglas-Peucker轨迹压缩函数
def douglasPeucker(points: List[Point], epsilon: Double): List[Point] = {
  if (points.length < 3) {
    return points
  }

  val dmax = points.view.zipWithIndex.map { case (point, index) =>
    if (index != 0 && index != points.length - 1) {
      perpendicularDistance(point, points.head, points.last)
    } else {
      0.0
    }
  }.max

  if (dmax > epsilon) {
    val index = points.view.zipWithIndex.maxBy { case (point, index) =>
      if (index != 0 && index != points.length - 1) {
        perpendicularDistance(point, points.head, points.last)
      } else {
        0.0
      }
    }._2

    val recResults1 = douglasPeucker(points.take(index+1), epsilon)
    val recResults2 = douglasPeucker(points.drop(index), epsilon)

    recResults1.init ::: recResults2
  } else {
    List(points.head, points.last)
  }
}

// 创建Spark会话
val spark = SparkSession.builder().appName("TrajectoryCompression").getOrCreate()

// 创建包含lon、lat、time和id列的示例DataFrame
//https://blog.csdn.net/qq_52128187?type=blog,by_laoli
val data = Seq(
  (40.7128, -74.0060, "2023-11-18 08:00:00", "1"),
  (40.7215, -74.0112, "2023-11-18 08:05:00", "1"),
  (40.7312, -74.0146, "2023-11-18 08:10:00", "1"),
  (40.7356, -74.0162, "2023-11-18 08:15:00", "1"),
  (40.7391, -74.0182, "2023-11-18 08:20:00", "1"),
  (40.7483, -74.0224, "2023-11-18 08:25:00", "1"),
  (40.7527, -74.0260, "2023-11-18 08:30:00", "1")
).toDF("lon", "lat", "time", "id")

// 为DataFrame添加id列
val dfWithId = data.withColumn("id", monotonically_increasing_id())

// 将DataFrame转换为Point列表
val points = dfWithId.as[(Double, Double, String, Long)].collect()
  .map(p => Point(p._1, p._2, p._3, p._4.toString)).toList

// 执行轨迹压缩
val compressedPoints = douglasPeucker(points, epsilon = 10)  // 设置您期望的epsilon值

// 将压缩后的数据重新转换为DataFrame
import spark.implicits._
val df2 = compressedPoints.toDF("lon", "lat", "time", "id")

参考文章

  • Douglas, D.H., and Peucker, T.K. "Algorithms for the reduction of the number of points required to represent a digitized line or its caricature." The Canadian Cartographer 10.2 (1973): 112-122.
  • Visvalingam, M., and Whyatt, J.D. "Line generalization by repeated elimination of the smallest-area triangle." Cartographic Journal 30.1 (1993): 46-51.
  • 轨迹数据压缩的Douglas-Peucker算法(附代码及原始数据) - 知乎

http://www.kler.cn/a/136693.html

相关文章:

  • 【CSS】设置滚动条样式
  • 【线性代数】通俗理解特征向量与特征值
  • [Git] git pull --rebase / git rebase origin/master
  • WebRTC 在视频联网平台中的应用:开启实时通信新篇章
  • 【人工智能计算机视觉】——深入详解人工智能计算机视觉之图像处理之基础图像处理技术
  • thinkphp6.0常用设计模式实例
  • 【Django-DRF用法】多年积累md笔记,第3篇:Django-DRF的序列化和反序列化详解
  • 【MATLAB源码-第83期】基于matlab的MIMO中V-BALST结构ZF和MMSE检测算法性能误码率对比。
  • 『亚马逊云科技产品测评』活动征文|开发一个手机官网
  • uniapp相关记录
  • 使用npm发布自己的组件库
  • vs2017 调试时 无法使用Lamda expressions表达式
  • [GFCTF 2021]wordy 编写去花IDAPYTHON
  • linux 服务器进程、端口查找,nginx 配置日志查找,lsof 命令详解
  • Linux程序设计(上)
  • 键盘方向键移动当前选中的table单元格,并可以输入内容
  • 通过 Canal 将 MySQL 数据实时同步到 Easysearch
  • Cypress断言篇
  • HINSTANCE是什么?
  • 打破思维的玻璃罩
  • shell脚本用法参数
  • Frida hook android 应用程序
  • 裸片-PCBA
  • 视频剪辑技巧:批量剪辑新篇章,AI智剪来领航
  • Vatee万腾外汇市场新力量:vatee科技决策力
  • Git——分布式版本控制工具