当前位置: 首页 > article >正文

【视觉SLAM十四讲学习笔记】第三讲——旋转矩阵

专栏系列文章如下:
【视觉SLAM十四讲学习笔记】第一讲——SLAM介绍
【视觉SLAM十四讲学习笔记】第二讲——初识SLAM

本章将介绍视觉SLAM的基本问题之一:如何描述刚体在三维空间中的运动

旋转矩阵

点、向量和坐标系

三维空间由3个轴组成,所以一个空间点的位置可以由3个坐标指定。而刚体,它不光有位置,还有自身的姿态。举个例子,相机也可以看成三维空间的刚体,于是位置是指相机在空间中的哪个地方,而姿态则是指相机的朝向,合起来称为位姿

点: 点是空间中的基本元素,没有长度,没有体积。

向量: 把两个点连接起来,就构成了向量。向量可以看成从某点指向另一点的一个箭头。不要把向量与它的坐标两个概念混淆。一个向量是空间当中的一样东西,并不需要和若干个实数相关联的。只有当我们指定这个三维空间中的某个坐标系时,才可以谈论该向量在此坐标系下的坐标,也就是找到若干个实数对应这个向量。简单来讲:向量本身就是一个东西,如果把它放在一个坐标系中,这个向量才有了对应于这个坐标系的坐标。

用线性代数的知识来说,三维空间中的某个点的坐标也可以用线性空间R^3来描述。假设在这个线性空间内,有该空间的一组基 (或者说基底)(e1,e2,e3),(基就是张成这个空间的一组线性相关的向量)那么,任意向量a在这组基下就有一个坐标,这里 (a1,a2,a3)T 称为a在此基下的坐标。公式如下:

img

坐标的具体取值,一是和向量本身有关,二是和坐标系(基)的选取有关。坐标系通常由3个正交的坐标轴组成,非正交的很少见。通常使用右手系,给定xy轴时,z 轴就可以通过右手法则由x × y定义出来。左手系的第3个轴与右手系的方向相反。

向量内积: 可以描述向量间的投影关系

img

其中<a,b>指向量a,b的夹角。

向量外积:

外积的结果是一个向量,它的方向垂直于这两个向量,大小为 |a||b|sin〈a,b〉,是两个向量张成的四边形的有向面积。

img

对于外积运算,我们引入∧符号,把a写成一个矩阵,事实上是一个反对称矩阵(Skew-symmetric matrix),反对称矩阵A满足AT = -A。你可以将∧记成一个反对称符号。这样就把外积a × b写成了矩阵与向量的乘法ab,把它变成了线性运算。这意味着任意向量都对应着唯一的一个反对称矩阵,反之亦然:

在这里插入图片描述

向量和加减法、内外积,即使在不谈论它们的坐标时也可以计算。例如,虽然内积在有坐标时,可以用两个向量的分量乘积之和表达,但是即使不知道它们的坐标时,也可以通过长度和夹角来计算二者的内积。所以两个向量的内积结果和坐标系的选取是无关的。

坐标系间的欧式变换

考虑运动的机器人,常见的做法是设定一个惯性坐标系(或者叫世界坐标系),可以认为它是固定不动的。相机或机器人则是一个移动坐标系。相机视野中某个向量p,它在相机坐标系下的坐标为pc,而在世界坐标系下看,它的坐标为pw。如果要实现这两个坐标之间的转换,需要先得到该点针对机器人坐标系的坐标值,再根据机器人位姿变换到世界坐标系中。我们需要一种数学手段来描述这个变换关系。

两个坐标系之间的运动由一个旋转加上一个平移组成,这种运动称为刚体运动。相机运动就是一个刚体运动。刚体运动过程中,同一个向量在各个坐标系下的长度和夹角都不会发生变化,只可能有空间位置和姿态的不同。此时,我们说刚体坐标系到世界坐标之间,相差了一个欧氏变换(Euclidean Transform)。

在这里插入图片描述

欧氏变换由旋转平移组成。首先考虑旋转,设某个单位正交基 (e1, e2, e3) 经过一次旋转变成了 (e1’, e2’, e3’) ,那么,对于同一个向量 a(该向量并没有随着坐标系的旋转而发生运动),它在两个坐标系下的坐标为[a1, a2, a3]T和[a1’, a2’, a3’]T。因为向量本身没变,根据坐标的定义,有:

img

为了描述两个坐标之间的关系,我们对上述等式的左右两边同时左乘

img

那么左边的系数就变成了单位矩阵,把中间的矩阵拿出来,定义成一个矩阵R:

img

这个矩阵由两组基之间的内积组成,刻画了旋转前后同一个向量的坐标变换关系。只要旋转是一样的,那么这个矩阵也是一样的。可以说,矩阵R描述了旋转本身。因此称为旋转矩阵(Rotation matrix)。该矩阵各分量是两个坐标系基的内积,由于基向量的长度为1,所以实际上是各基向量的夹角之余弦。所以这个矩阵也叫方向余弦矩阵(Direction Cosine matrix)。

旋转矩阵有一些特别的性质。它是一个行列式为1的正交矩阵。反之,行列式为1的正交矩阵也是一个旋转矩阵。以把 n 维旋转矩阵的集合定义如下:

img

SO(n) 是特殊正交群(Special Orthogonal Group)的意思。这个集合由n维空间的旋转矩阵组成,特别地,SO(3) 就是指三维空间的旋转。通过旋转矩阵,我们可以直接谈论两个坐标系之间的旋转变换,而不用再从基开始谈起。

由于旋转矩阵为正交矩阵,它的逆(即转置)描述了一个相反的旋转:

在这里插入图片描述

在欧氏变换中,除了旋转之外还有平移。考虑世界坐标系中的向量a,经过一次旋转(用R描述)和一次平移t后,得到了a′,把旋转和平移合到一起,有:
在这里插入图片描述

t称为平移向量。平移部分只需把平移向量加到旋转之后的坐标上。

通过上式,我们用一个旋转矩阵R和一个平移向量t完整地描述了一个欧氏空间的坐标变换关系。定义坐标系1、坐标系2,那么向量a在两个系下坐标为 a1, a2,它们之间的关系应该是:

在这里插入图片描述

R12 是指把坐标系2的向量变换到坐标系1中。同理,如果我们要表达从1到2的旋转矩阵时,就写成R21。关于平移t12,实际对应的是坐标系1原点指向坐标系2原点的向量,在坐标系1下取的坐标,把它记作从1到2的向量。但是反过来的t21,即从2指向1的向量在坐标系2下的坐标,并不等于−t12,这里和两个系的旋转还有关系。从向量层面来看,它们确实是反向的关系,但这两个向量的坐标值并不是相反数。

变换矩阵与齐次坐标

上面的变换关系并非一个线性关系,一旦变换多次就会非常繁杂。所以我们引入齐次坐标和变换矩阵:

在这里插入图片描述

这是一个数学技巧:我们在一个三维向量的末尾添加 1,将其变成了四维向量,称为齐次坐标。对于这个四维向量,我们可以把旋转和平移写在一个矩阵里面,使得整个关系变成线性关系。该式中,矩阵T称为变换矩阵(Transform Matrix)。

我们暂时用ã表示a的齐次坐标。那么依靠齐次坐标和变换矩阵,两次变换的叠加就可以有很好的形式:

在这里插入图片描述

但是懒得区分齐次和非齐次的符号了,所以在不引起歧义的情况下,我们就直接把它写成b=Ta的样子,默认其中进行了齐次坐标的转换。要注意的是,不进行齐次坐标转换时,这边的乘法在矩阵维度上是不成立的。

变换矩阵T具有比较特别的结构:左上角为旋转矩阵,右侧为平移向量,左下角为0 向量,右下角为 1。这种矩阵又称为特殊欧氏群(Special Euclidean Group):

img

与 SO(3) 一样,求解该矩阵的逆表示一个反向的变换:

&pos_id=img-bPvHSBFk-1700485941449)
同样,我们用T12 这样的写法来表示从2到1的变换。

总结:

首先介绍了向量及其坐标表示,并介绍了向量间的运算;然后,坐标系之间的运动由欧氏变换描述,它由平移和旋转组成。旋转可以由旋转矩阵 SO(3) 描述,而平移直接由一个R^3向量描述。最后,如果将平移和旋转放在一个矩阵中,就形成了变换矩阵 SE(3)。


http://www.kler.cn/a/137053.html

相关文章:

  • DCN-DCN路由器online_list.php存在任意文件读取漏洞
  • 精通Redis
  • python coding(二) Pandas 、PIL、cv2
  • Linux系统的阻塞方式和非阻塞方式是什么意思?
  • javaFX.(蜜雪冰城点餐小程序)MySQL数据库
  • 线性代数期末总复习的点点滴滴(1)
  • 碳中和领域研究,细谈新能源“爆发”的原因之一
  • centos安装指定版本docker
  • 面试官:如何实现微服务全链路灰度发布?
  • Element UI 禁用数字输入框组件添加鼠标滚动事件
  • 数据处理生产环境_获取当前日期的前一天日期
  • I.MX6ULL开发笔记(一)——环境搭建、镜像烧录、网络连接
  • Qt如何解析JSON格式
  • SAP smartform和ALV如何使用图片 如何下载SE78上传的图片到本地
  • 解析紫光展锐T820 5G芯片——让照片接近原色
  • 【自动驾驶解决方案】C++取整与保留小数位
  • CentOS部署Skywalking
  • 浅谈电动汽车充电桩设计与应用研究
  • Linux 基础操作手记四
  • #gStore-weekly | gBuilder功能详解之表单录入
  • Web之HTML笔记
  • 人工智能基础_机器学习044_使用逻辑回归模型计算逻辑回归概率_以及_逻辑回归代码实现与手动计算概率对比---人工智能工作笔记0084
  • yolo系列模型训练数据集全流程制作方法(附数据增强代码)
  • Git详解及 github使用
  • Spring的声明式事务
  • WebSocket --- ws模块源码解析(详解)