当前位置: 首页 > article >正文

机器学习第7天:逻辑回归

文章目录

介绍

概率计算

逻辑回归的损失函数

单个实例的成本函数

整个训练集的成本函数

鸢尾花数据集上的逻辑回归

Softmax回归

Softmax回归数学公式

Softmax回归损失函数

调用代码

参数说明

结语


介绍

作用:使用回归算法进行分类任务

思想:将回归值转为概率值,然后找到一个适当的数值,当概率大于这个值时,归为一类,当小于这个值时,归为另一类


概率计算

p=\sigma (x^{T}w)

函数的输入值为特征的加权和 x^{T}w

\sigma是sigmoid函数,公式为

\sigma(t) =\frac{1}{1+e^{(-t)}}

函数图像为

可见它输出一个0-1的值,我们可以将这个值当作概率 

则我们可以通过这个概率来分类,设定一个值,在这个值的两端进行分类


逻辑回归的损失函数

单个实例的成本函数

当p>=0.5时

c(w)=-log(p)

当p<0.5时

c(w)=-log(1-p)


整个训练集的成本函数

J(w)=\frac{1}{m}\sum_{i=1}^{m}[y^{i}log(p^{i})+(1-y^{i})log(1-p^{i})]

这个损失函数也是一个凸函数,可以使用梯度下降法使损失最小化


鸢尾花数据集上的逻辑回归

鸢尾花数据集是机器学习中一个经典的数据集,它有花瓣和花萼的长和宽,任务是用它们来判断鸢尾花的种类

看代码和效果

from sklearn import datasets
from sklearn.linear_model import LogisticRegression
import matplotlib.pyplot as plt
import numpy as np


iris = datasets.load_iris()

x = iris["data"][:, 3:]
y = (iris["target"] == 2)

model = LogisticRegression()
model.fit(x, y)

x_new = np.linspace(0, 3, 1000).reshape(-1, 1)
y_proba = model.predict_proba(x_new)
plt.plot(x_new, y_proba[:, 1], "g-", label="Iris virginica")
plt.plot(x_new, y_proba[:, 0], "b--", label="Not Iris virginica")

plt.xlabel("Petal width")
plt.ylabel("probability")

plt.legend()
plt.show()

可以看见,当花瓣长度变化的时候,两种花种类的概率随之变化

简单介绍一下新的代码,predict.proba方法返回样本为可能的两种花的概率。


Softmax回归

上述方法主要用于二分类任务,我们再来看一种多分类方法,Softmax回归


Softmax回归数学公式

Softmax(s_{i})=\frac{e^{s_{i}}}{\sum_{j=1}^{n}e^{s_{j}}}

Softmax函数也叫指数归一化函数,它对x进行指数处理再进行归一化得出一个概率

这个函数的自变量为一个分数s,这个s由我们的数据的转置矩阵与一个参数相乘得来

s = x^{T}\theta

对于不同的类,参数\theta都不相同,模型训练的任务就是拟合这个参数


Softmax回归损失函数

L = -\frac{1}{m}\sum_{i=1}^{m}\sum_{K}^{k=1}y_{k}^{i}log(p_{k}^{i})

当k=2时(二分类),此成本函数等于sigmoid逻辑回归的成本函数


调用代码

model = LogisticRegression(multi_class="multinomial", solver="lbfgs", C=10)
model.fit(x, y)

参数说明

multi_class="multinomial": 表示采用多类别分类,即多类别的逻辑回归问题,与二元逻辑回归不同。

solver="lbfgs": 表示使用LBFGS(Limited-memory Broyden–Fletcher–Goldfarb–Shanno)优化算法进行求解。

C=10: 表示正则化参数,控制模型的正则化强度,C值越小,正则化强度越高。


结语

逻辑回归是一种简单的分类方法,二分类任务就用第一种方法,多分类任务就用第二种方法


http://www.kler.cn/a/137507.html

相关文章:

  • 微信小程序map组件所有markers展示在视野范围内
  • MATLAB深度学习实战文字识别
  • maven之插件调试
  • maven如何从外部导包
  • Android NDK开发实战之环境搭建篇(so库,Gemini ai)
  • NodeLocal DNS 全攻略:从原理到应用实践
  • JVM对象创建与内存分配
  • 【漏洞复现】IP-guard WebServer 存在远程命令执行漏洞
  • MySQL InnoDB 引擎底层解析(一)
  • 数据库-索引
  • 传输层协议-TCP协议
  • 键盘快捷键工具Keyboard Maestro mac中文版介绍
  • 【JVM】JVM异常不打印堆栈信息 [ -XX:-OmitStackTraceInFastThrow ]
  • 第十一章 目标检测中的NMS
  • RT-DETR优化策略:轻量级Backbone改进 | 高效模型 (Efficient MOdel, EMO),现代倒残差移动模块设计|ICCV2023
  • 【图像分类】【深度学习】【轻量级网络】【Pytorch版本】MobileNets_V2模型算法详解
  • No appropriate protocol -- Mysql
  • Docker-compose 安装mysql8
  • C# Onnx DIS高精度图像二类分割
  • 【云原生-Kurbernetes篇】K8s的存储卷/数据卷+PV与PVC
  • 趣学python编程 (三、计算机基础知识)
  • Ghidra逆向工具配置 MacOS 的启动台显示(Python)
  • linux中编写.sh脚本并赋权限问题
  • 深度学习之基于CT影像图像分割检测系统
  • 5.4 Windows驱动开发:内核通过PEB取进程参数
  • python之字符串