当前位置: 首页 > article >正文

偏好强化学习概述

文章目录

    • 为什么需要了解偏好强化学习
    • 什么是偏好强化学习
      • 基于偏好的马尔科夫决策过程(Markov decision processes with preferences,MDPP)
    • 反馈类型分类
    • 学习算法分类
      • 近似策略分布(Approximating the Policy Distribution)
      • 比较和排序策略(Comparing and Ranking Policies)
      • 学习偏好模型(Learning a Preference Model)
      • 学习奖励函数(Learning a Utility Function)
    • 近期工作
      • Deep Reinforcement Learning from Human Preference(2023)
      • Preference Transformer: Modeling Human Preferences using Transformers for RL(2023)
    • 更多相关文章

为什么需要了解偏好强化学习

为什么需要了解偏好强化学习?目前强化学习主流的方法都是基于奖励的,强化学习优化目标是长期的累计奖励。而如何设计一个好的奖励函数通常需要大量专家领域知识。并且需要考虑提出的奖励函数是否会影响学习过程,比如学习速度等等问题。在有些场景也并不是能够很好地去定义出这样一个奖励。

对于实际业务问题,业务本身比较复杂,传统解决方法(比如行为树)如果不好,那也不能基于数据去做一些offline RL。并且如果不好给定奖励函数的话,通常会采用模仿学习的方法。但是也存在一些场景人类专家也不能给出一些确切的行为,因此也不能去做一些模仿学习,比如在机器人领域控制电机的电流进而控制机械臂,人类专家无法直接给出电流的参考示例。直接人类给出动作的代价相比于给出偏好的代价是更高的。还有一些场景动作空间巨大,比如电网调度领域,动作空间高达几万个等等的一些传统解决方案很棘手的场景中,可以考虑去采用偏好强化学习来作为一种初始化网络参数,或者微调修复性能的方法。

随着生产物质的丰富,用户对于个性化追求将愈发强烈。如何将用户的个性化偏好进行量化,进而更好地服务用户(比如用GPT作为智能家居中控,给用户提供个性化的全家智能)。比如在游戏AI领域,如何基于用户反馈,设计出拟人性的智能体,或者是符合玩家兴趣爱好的智能体,或者依据玩家偏好变化而变化的NPC都是未来的发展趋势。

什么是偏好强化学习

想要去解决一个问题,首先需要去寻找的就是优化目标。在强化学习里面的优化目标就是奖励函数,因此想要待解决的问题用强化学习方法来求解,就需要将优化目标与奖励函数挂钩。而基于专家经验设计的奖励函数通常会面临四个问题:1. Reward Hacking: 只管最大化奖励分数,不考虑实际情况。2. Reward Shaping: 平衡goal definition和guidance task。3. Infinite Rewards: 存在一些case,是坚决不允许发生的。虽然现在有mask可以去做,但是也有一些问题其实是没有办法用mask去做的,只有做了之后才能验证是否违反了硬约束条件。4. Multi-objective Trade-off: 如果需要考虑多个优化目标
当然也有一些方法在设计一些内在的奖励,来处理这样一个问题。然而设计一个好的内在奖励其实也是很困难的。

偏好强化学习(Preference-Based Reinforcement Learning, PbRL)直接基于专家的反馈进行学习,并不需要设计奖励函数,并且对于人类对于专业领域的需求也比较少,因为给一个确切的数值奖励给智能体,而是一个比较值。PbRL的关键在于说把强化学习里面,对于奖励,从一个数值的反馈信号变成了一个偏好的反馈信号。想要构建偏好强化学习的优化过程,我们还需要去定义一些符号,和我们能够拿到的数据集合:

  • z i ≻ z j z_{i} \succ z_{j} zizj: 数据 z i z_{i} zi是strictly preferred。
  • z i ∼ z j z_{i} \sim z_{j} zizj: 数据偏好是无法区分的 indifferent。
  • z i ⪰ z j z_{i} \succeq z_{j} zizj: 数据 z i z_{i} zi是weakly preferred。

基于偏好的马尔科夫决策过程(Markov decision processes with preferences,MDPP)

一个MDPP可以定义成 ( S , A , μ , δ , γ , ρ ) (S, A, \mu, \delta, \gamma, \rho) (S,A,μ,δ,γ,ρ)

  • S S S 状态空间
  • A A A 动作空间
  • μ ( s ) \mu(s) μ(s) 初始状态分布
  • δ \delta δ 状态转移模型 δ ( s ′ ∣ s , a ) \delta(s^{\prime} | s, a) δ(ss,a)
  • γ \gamma γ 折扣因子

一条采样的轨迹(trajectory)可以表示为:

τ = { s 0 , a 0 , s 1 , a 1 , … , s n − 1 , a n − 1 , s n } \boldsymbol{\tau}=\{s_0,a_0,s_1,a_1,\ldots,s_{n-1},a_{n-1},s_n\} τ={s0,a0,s1,a1,,sn1,an1,sn}

ρ ( τ i ≻ τ j ) \rho(\tau_{i} \succ \tau_{j}) ρ(τiτj)定义为给定轨迹 ( τ i , τ j ) (\tau_{i}, \tau_{j}) (τi,τj)下, τ i ≻ τ j \tau_{i} \succ \tau_{j} τiτj的概率。智能体可以接收到一个偏好集合:

ζ = { ζ i } = { τ i 1 ≻ τ i 2 } i = 1... N \zeta=\{\zeta_i\}=\{\tau_{i1}\succ\tau_{i2}\}_{i=1...N} ζ={ζi}={τi1τi2}i=1...N

并且假设偏好是严格偏好,也就是有:

ρ ( τ i ≻ τ j ) = 1 − ρ ( τ j ≻ τ i ) \rho(\boldsymbol\tau_i \succ \boldsymbol\tau_j) = 1 - \rho(\boldsymbol{\tau}_j \succ \boldsymbol{\tau}_{i}) ρ(τiτj)=1ρ(τjτi)

注意:这里并没有假设一个奖励的数值信号 r ( s , a ) r(s, a) r(s,a)

如何基于人类反馈的偏好来优化策略呢?

基于人类反馈的优化框架如下图所示:

对于一个智能体来说,一个通用的目标是,在一个给定的集合 ζ \zeta ζ中去寻找到一个策略 π ∗ \pi^{*} π,能够最大化人类偏好。 τ 1 ≻ τ 2 ∈ ζ \tau_{1} \succ \tau_{2} \in \zeta τ1τ2ζ需要满足的条件是:

τ 1 ≻ τ 2 ⇔ Pr ⁡ π ( τ 1 ) > Pr ⁡ π ( τ 2 ) \boldsymbol{\tau_1}\succ \boldsymbol{\tau_2}\Leftrightarrow\operatorname*{Pr}_\pi(\boldsymbol{\tau}_1)>\operatorname{Pr}_\pi({\boldsymbol\tau}_2) τ1τ2πPr(τ1)>Prπ(τ2)

其中

Pr ⁡ π ( τ ) = μ ( s 0 ) ∏ t = 0 ∣ τ ∣ π ( a t ∣ s t ) δ ( s t + 1 ∣ s t , a t ) \Pr_{\pi}(\boldsymbol{\tau})=\mu(s_0)\prod\limits_{t=0}^{|\boldsymbol{\tau}|}\pi(a_t\mid s_t)\delta(s_{t+1}\mid s_t,a_t) πPr(τ)=μ(s0)t=0τπ(atst)δ(st+1st,at)

基于轨迹(trajectory)的最大化偏好问题可以描述为:

τ 1 ≻ τ 2 ⇔ π ∗ = arg ⁡ max ⁡ π ( Pr ⁡ π ( τ 1 ) − Pr ⁡ π ( τ 2 ) ) \pmb\tau_1\succ\pmb\tau_2\Leftrightarrow\pi^*=\arg\max\limits_{\pi}\left(\Pr_\pi(\pmb\tau_1)-\Pr_\pi(\pmb\tau_2)\right) τ1τ2π=argπmax(πPr(τ1)πPr(τ2))

到此,我们就可以定义出一个最小化偏好损失函数:

L ( π , τ 1 ≻ τ 2 ) = − ( Pr ⁡ π ( τ 1 ) − Pr ⁡ π ( τ 2 ) ) L(\pi,\boldsymbol{\tau_1} \succ \boldsymbol{\tau_2}) = - \left(\Pr_\pi(\boldsymbol{\tau}_1) -\Pr_\pi({\boldsymbol\tau_2})\right) L(π,τ1τ2)=(πPr(τ1)πPr(τ2))

在有多个偏好相互比较的关系下,损失函数可以表示为:

L ( π , ζ ) = ( L ( π , ζ 0 ) , L ( π , ζ 1 ) , … , L ( π , ζ n ) ) \boldsymbol{L}(\pi,\zeta)=(L(\pi,\zeta_{0}),L(\pi,\zeta_1),\dots,L(\pi,\zeta{_n})) L(π,ζ)=(L(π,ζ0),L(π,ζ1),,L(π,ζn))

表示为权重加和的方式则为:

L ( π , ζ ) = ∑ i = 1 N α i L ( π , ζ i ) \mathcal{L}(\pi,\zeta)=\sum_{i=1}^N\alpha_i L(\pi,\zeta_i) L(π,ζ)=i=1NαiL(π,ζi)

反馈类型分类

  1. 动作偏好(action preference): 对于给定的相同状态,比较两个动作。这种方法无法处理短期偏好与长期偏好的关系。
  2. 状态偏好(state preference): s i 1 ≻ s i 2 s_{i1} \succ s_{i2} si1si2表示相比于状态 s i 2 s_{i2} si2,人类更偏好状态 s i 1 s_{i1} si1
  3. 轨迹偏好(trajectory preference): τ i 1 ≻ τ i 2 \tau_{i1} \succ \tau_{i2} τi1τi2表示轨迹 τ i 1 \tau_{i1} τi1优于轨迹 τ i 2 \tau_{i2} τi2。轨迹偏好里一个重要问题就是信用分配问题(temporal credit assignment problem)。

学习算法分类

近似策略分布(Approximating the Policy Distribution)

对于给定的trajectory ζ \zeta ζ,基于参数化的策略分布 Pr ⁡ ( π ∣ ζ ) \Pr(\pi | \zeta) Pr(πζ)产生不同的策略 π 1 , π 2 \pi_{1}, \pi_{2} π1,π2,再基于产生的不同的策略来产生不同的trajector τ 1 , τ 2 \tau_{1}, \tau_{2} τ1,τ2, 再给定人类评判偏好,存储偏好轨迹。最后产生能够最大化轨迹偏好的策略 a r g m a x π P r ( π ∣ ζ ) argmax_{\pi}Pr(\pi | \zeta) argmaxπPr(πζ)

比较和排序策略(Comparing and Ranking Policies)

给定策略集合,在策略集合中直接进行偏好排序,选取获取偏好排序最大的策略作为最终策略进行输出:

学习偏好模型(Learning a Preference Model)

直接学一个偏好模型: C ( a ≻ a ′ ∣ s ) C(a \succ a^{\prime} | s) C(aas),策略为贪婪策略。类似DQN,在这里是直接计算偏好函数,然后基于偏好函数来直接求解策略。

学习奖励函数(Learning a Utility Function)

基于偏好计算一个奖励函数 U ( τ ) U(\tau) U(τ),在许多场景中可以拆分为 U ( s , a ) U(s, a) U(s,a)。策略求解即为最大化奖励的过程。 这也是目前主流的求解方案:

总结这四类方法就是:1. 构建一个产生策略的函数 θ \theta θ,一最大化偏好轨迹来优化 θ \theta θ。2. 给定一个策略集合,基于偏好,直接在策略集合中选取能够产生人类偏好最大的策略。3. 学习一个偏好模型 C ( a ≻ a ′ ∣ s ) C(a \succ a^{\prime} | s) C(aas), 基于这个偏好模型直接贪婪产生策略。4. 学习奖励函数,策略基于奖励函数进行优化。

近期工作

Deep Reinforcement Learning from Human Preference(2023)

  • Deep Reinforcement Learning from Human Preference

这篇文章主要贡献是用于比较困难的游戏场景中:

奖励预测器损失函数可以表示为:

P ^ [ σ 1 ≻ σ 2 ] = exp ⁡ ∑ r ^ ( a t 1 , a t 1 ) exp ⁡ ∑ r ^ ( o t 1 , a t 1 ) + exp ⁡ ∑ r ^ ( o t 2 , a t 2 ) \hat{P}\bigl[\sigma^1\succ\sigma^2\bigr]=\frac{\exp\sum\hat{r}\bigl(a_t^1,a_t^1\bigr)}{\exp\sum\hat{r}(o^1_t,a_t^1)+\exp\sum{\hat{r}(o_t^2,a_t^2)}} P^[σ1σ2]=expr^(ot1,at1)+expr^(ot2,at2)expr^(at1,at1)

log ⁡ ( r ^ ) = − ∑ ( σ 1 , σ 2 , μ ) ∈ D μ ( 1 ) log ⁡ P ^ [ σ 1 ≻ σ 2 ] + μ ( 2 ) log ⁡ P ^ [ σ 2 ≻ σ 1 ] \log(\hat r)=-\sum_{(\sigma^1,\sigma^2,\mu)\in\mathcal D}\mu(1)\log\hat P\big[\sigma^1\succ\sigma^2\big]+\mu(2)\log\hat P\bigl[\sigma^2\succ\sigma^1\bigr] log(r^)=(σ1,σ2,μ)Dμ(1)logP^[σ1σ2]+μ(2)logP^[σ2σ1]

人类偏好的不稳定性,会导致奖励预测器的偏差和方差都受到一定的影响。

实验结果:

Preference Transformer: Modeling Human Preferences using Transformers for RL(2023)

  • Preference Transformer: Modeling Human Preferences using Transformers for RL

这篇文章主要用于解决非马尔科夫性

整体框架图:


Preference Transformer局部:

注意奖励在Linear层就已经进行了预测,后续输出是对trajectory奖励的加权。

在实验部分,作者设计了一系列的评估指标,用于确定Preference Transformer确实是学到了中间的关键步骤奖励,也就是确实进行了置信分配。

更多相关文章

  • Tencent AI Lab:DEPLOYING OFFLINE REINFORCEMENT LEARNING WITH HUMAN FEEDBACK(2023)
  • UC Berkeley:Principled Reinforcement Learning with Human Feedback from Pairwise or K-wise Comparisons(2023)
  • OpenAI: Deep reinforcement learning from human preferences (2023)
  • UC Berkeley:Preference Transformer: Modeling Human Preferences using Transformers for RL(2023)
  • DeepMind: Improving Multimodal Interactive Agents with Reinforcement Learning from Human Feedback(2022)
  • Humans are not Boltzmann Distributions: Challenges and Opportunities for Modelling Human Feedback and Interaction in Reinforcement Learning(2022)
  • Google:Offline Reinforcement Learning from Human Feedback in Real-World Sequence-to-Sequence Tasks(2021)
  • Explore, Exploit or Listen: Combining Human Feedback and Policy Model to Speed up Deep Reinforcement Learning in 3D Worlds (2021)
  • Human feedback in continuous actor-critic reinforcement learning(2019)
  • Stanford: Deep Reinforcement Learning from Policy-Dependent Human Feedback (2019)
  • A Survey of Preference-Based Reinforcement Learning Methods (2017)
  • Nature: Reinforcement learning improves behaviour from evaluative feedback(2015)
  • Augmenting Reinforcement Learning with Human Feedback(2011)

http://www.kler.cn/a/14394.html

相关文章:

  • ajax写法和json的知识点
  • Redis高可用高性能缓存的应用系列06 - 热Key,大Key,并发竞争解决方案
  • Java_常用API
  • GNU make的官方生成依赖例子理解
  • 有手就行——基础XGBoost实战以 iris 数据集为例
  • 并发计算公式
  • 计及调度经济性的光热电站储热容量配置方法【IEEE30节点】(Matlab代码实现)
  • backward()和zero_grad()在PyTorch中代表什么意思
  • 机器学习在生态、环境经济学中的实践技术应用及论文写作
  • Python 读写 CSV 数据
  • Shiro详解(超全面)
  • 备份数据看这里,免费教你苹果手机怎么备份所有数据!
  • js常用方法
  • Auto-GPT免费尝鲜之初体验-使用攻略和总结
  • XPM_CDC_HANDSHAKE(UG974)
  • ArcGIS Pro用户界面
  • 【Unity入门】17.脚本访问父子结点
  • ChatGPT会取代RPA?ta自己可不是这么说的!
  • SQL Server tempdb 闩锁争用
  • freeswitch的任务引擎问题与解决方案