当前位置: 首页 > article >正文

Unity中Shader的Standard材质解析(一)

文章目录

  • 前言
  • 一、在Unity中,按一下步骤准备
    • 1、在资源管理面板创建一个 Standard Surface Shader
    • 2、因为Standard Surface Shader有很多缺点,所以我们把他转化为顶点片元着色器
    • 3、整理只保留主平行光的Shader效果
    • 4、精简后的最终代码


前言

在Unity中,实现PBR材质的Shader


一、在Unity中,按一下步骤准备

1、在资源管理面板创建一个 Standard Surface Shader

在这里插入图片描述

2、因为Standard Surface Shader有很多缺点,所以我们把他转化为顶点片元着色器

  • 点击Show generated code

在这里插入图片描述

  • 把生成后的,顶点片元着色器代码复制过去

在这里插入图片描述

  • 这样我们就可以得到一个简单的PBR材质了

在这里插入图片描述

3、整理只保留主平行光的Shader效果

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

在这里插入图片描述

4、精简后的最终代码

最终效果:

  • 给予对于纹理

在这里插入图片描述
在这里插入图片描述

//Standard材质
Shader "MyShader/P2_2_4"
{
    Properties
    {
        _Color ("Color", Color) = (1,1,1,1)
        _MainTex ("Albedo (RGB)", 2D) = "white" {}
        [NoScaleOffset]_MetallicTex("Metallic(R) Smoothness(G) AO(B)",2D) = "white" {}
        [Normal]_NormalTex("NormalTex",2D) = "bump" {}
        
        _Glossiness ("Smoothness", Range(0,1)) = 0.0
        _Metallic ("Metallic", Range(0,1)) = 0.0
        _AO("AO",Range(0,1)) = 1.0
    }
    SubShader
    {
        Tags
        {
            "RenderType"="Opaque"
        }
        LOD 200

        // ---- forward rendering base pass:
        Pass
        {
            Name "FORWARD"
            Tags
            {
                "LightMode" = "ForwardBase"
            }

            CGPROGRAM
            // compile directives
            #pragma vertex vert
            #pragma fragment frag
            #pragma target 3.0
            #pragma multi_compile_instancing
            #pragma multi_compile_fog
            #pragma multi_compile_fwdbase

            #include "UnityCG.cginc"
            #include "Lighting.cginc"
            #include "UnityPBSLighting.cginc"
            #include "AutoLight.cginc"

            sampler2D _MainTex;
            float4 _MainTex_ST;
            half _Glossiness;
            half _Metallic;
            fixed4 _Color;
            sampler2D _MetallicTex;
            half _AO;
            sampler2D _NormalTex;
            
            struct appdata
            {
                float4 vertex : POSITION;
                float4 tangent : TANGENT;
                float3 normal : NORMAL;
                float4 texcoord : TEXCOORD0;
                float4 texcoord1 : TEXCOORD1;
                float4 texcoord2 : TEXCOORD2;
                float4 texcoord3 : TEXCOORD3;
                fixed4 color : COLOR;
                UNITY_VERTEX_INPUT_INSTANCE_ID
            };

            // vertex-to-fragment interpolation data
            // no lightmaps:
            struct v2f
            {
                float4 pos : SV_POSITION;
                float2 uv : TEXCOORD0; // _MainTex
                float3 worldNormal : TEXCOORD1;
                float3 worldPos : TEXCOORD2;
                #if UNITY_SHOULD_SAMPLE_SH
                    half3 sh : TEXCOORD3; // SH
                #endif
                //切线空间需要使用的矩阵
                float3 tSpace0 : TEXCOORD4;
                float3 tSpace1 : TEXCOORD5;
                float3 tSpace2 : TEXCOORD6;

                UNITY_FOG_COORDS(7)
                UNITY_SHADOW_COORDS(8)
            };

            // vertex shader
            v2f vert(appdata v)
            {
                v2f o;

                o.pos = UnityObjectToClipPos(v.vertex);
                o.uv.xy = TRANSFORM_TEX(v.texcoord, _MainTex);
                float3 worldPos = mul(unity_ObjectToWorld, v.vertex).xyz;
                float3 worldNormal = UnityObjectToWorldNormal(v.normal);

                //世界空间下的切线
                half3 worldTangent = UnityObjectToWorldDir(v.tangent);
                //切线方向
                half tangentSign = v.tangent.w * unity_WorldTransformParams.w;
                //世界空间下的副切线
                half3 worldBinormal = cross(worldNormal, worldTangent) * tangentSign;
                //切线矩阵
                o.tSpace0 = float3(worldTangent.x, worldBinormal.x, worldNormal.x);
                o.tSpace1 = float3(worldTangent.y, worldBinormal.y, worldNormal.y);
                o.tSpace2 = float3(worldTangent.z, worldBinormal.z, worldNormal.z);

                o.worldPos.xyz = worldPos;
                o.worldNormal = worldNormal;

                // SH/ambient and vertex lights

                #if UNITY_SHOULD_SAMPLE_SH && !UNITY_SAMPLE_FULL_SH_PER_PIXEL
                    o.sh = 0;
                    // Approximated illumination from non-important point lights
                #ifdef VERTEXLIGHT_ON
                    o.sh += Shade4PointLights (
                    unity_4LightPosX0, unity_4LightPosY0, unity_4LightPosZ0,
                    unity_LightColor[0].rgb, unity_LightColor[1].rgb, unity_LightColor[2].rgb, unity_LightColor[3].rgb,
                    unity_4LightAtten0, worldPos, worldNormal);
                #endif
                    o.sh = ShadeSHPerVertex (worldNormal, o.sh);
                #endif


                UNITY_TRANSFER_LIGHTING(o, v.texcoord1.xy);

                UNITY_TRANSFER_FOG(o, o.pos); // pass fog coordinates to pixel shader

                return o;
            }

            // fragment shader
            fixed4 frag(v2f i) : SV_Target
            {
                UNITY_EXTRACT_FOG(i);
                
                float3 worldPos = i.worldPos.xyz;
                
                float3 worldViewDir = normalize(UnityWorldSpaceViewDir(worldPos));

                SurfaceOutputStandard o;
                UNITY_INITIALIZE_OUTPUT(SurfaceOutputStandard, o);

                fixed4 mainTex = tex2D(_MainTex, i.uv);
                o.Albedo = mainTex.rgb * _Color;

                o.Emission = 0.0;

                fixed4 metallicTex = tex2D(_MetallicTex, i.uv);
                o.Metallic = metallicTex.r * _Metallic;
                o.Smoothness = metallicTex.g * _Glossiness;
                o.Occlusion = metallicTex.b * _AO;
                o.Alpha = 1;


                half3 normalTex = UnpackNormal(tex2D(_NormalTex,i.uv));
                half3 worldNormal = half3(dot(i.tSpace0,normalTex),dot(i.tSpace1,normalTex),dot(i.tSpace2,normalTex));
                o.Normal = worldNormal;


                // compute lighting & shadowing factor
                UNITY_LIGHT_ATTENUATION(atten, i, worldPos)

                // Setup lighting environment
                UnityGI gi;
                UNITY_INITIALIZE_OUTPUT(UnityGI, gi);
                gi.indirect.diffuse = 0;
                gi.indirect.specular = 0;
                gi.light.color = _LightColor0.rgb;
                gi.light.dir = _WorldSpaceLightPos0.xyz;
                // Call GI (lightmaps/SH/reflections) lighting function
                UnityGIInput giInput;
                UNITY_INITIALIZE_OUTPUT(UnityGIInput, giInput);
                giInput.light = gi.light;
                giInput.worldPos = worldPos;
                giInput.worldViewDir = worldViewDir;
                giInput.atten = atten;
                #if defined(LIGHTMAP_ON) || defined(DYNAMICLIGHTMAP_ON)
                    giInput.lightmapUV = IN.lmap;
                #else
                giInput.lightmapUV = 0.0;
                #endif
                #if UNITY_SHOULD_SAMPLE_SH && !UNITY_SAMPLE_FULL_SH_PER_PIXEL
                    giInput.ambient = i.sh;
                #else
                giInput.ambient.rgb = 0.0;
                #endif
                giInput.probeHDR[0] = unity_SpecCube0_HDR;
                giInput.probeHDR[1] = unity_SpecCube1_HDR;
                #if defined(UNITY_SPECCUBE_BLENDING) || defined(UNITY_SPECCUBE_BOX_PROJECTION)
                    giInput.boxMin[0] = unity_SpecCube0_BoxMin; // .w holds lerp value for blending
                #endif
                #ifdef UNITY_SPECCUBE_BOX_PROJECTION
                    giInput.boxMax[0] = unity_SpecCube0_BoxMax;
                    giInput.probePosition[0] = unity_SpecCube0_ProbePosition;
                    giInput.boxMax[1] = unity_SpecCube1_BoxMax;
                    giInput.boxMin[1] = unity_SpecCube1_BoxMin;
                    giInput.probePosition[1] = unity_SpecCube1_ProbePosition;
                #endif
                LightingStandard_GI(o, giInput, gi);

                // PBS的核心计算
                fixed4 c = LightingStandard(o, worldViewDir, gi);
                UNITY_APPLY_FOG(_unity_fogCoord, c); // apply fog
                UNITY_OPAQUE_ALPHA(c.a); //把c的Alpha置1
                return c;
            }
            ENDCG

        }
    }

}

http://www.kler.cn/a/144447.html

相关文章:

  • 开发者的 Debian 12 KDE 配置优化指南
  • 聚类笔记:HDBSCAN
  • 【ARM CoreLink 系列 3.1 -- CCI-500 详细介绍 -上半部】
  • 从裸机启动开始运行一个C++程序(十三)
  • 【自主探索】基于 rrt_exploration 的单个机器人自主探索建图
  • 【人生苦短,我学 Python】(2)Python 语言基础
  • 0003Java程序设计-ssm基于微信小程序的家教信息管理系统
  • 【洛谷 P1636】Einstein学画画 题解(图论+欧拉通路)
  • STM32通用定时器产生PWM信号
  • Oracle SQL 注入上的 Django GIS 函数和聚合漏洞 (CVE-2020-9402)
  • ElasticSearch查询语法及深度分页问题
  • C语言指针
  • C++类与对象(6)—初始化列表、explicit关键字、static成员
  • 日历视图,轻松解决时间管理难题丨三叠云
  • A. Weird Sum - 思维
  • 【AI认证笔记】NO.2人工智能的发展
  • 字符串函数
  • 绿色能源守护者:光伏运维无人机
  • C++初阶 | [六] 模板初阶
  • 02 _ 架构分层:我们为什么一定要这么做?