当前位置: 首页 > article >正文

区间第k小数 (可持久化线段树、主席树)

 题意:多次询问,每次询问某区间的第k小数。

可持久化线段树:

掺杂了一点前缀和的思想,对于每一个1 ~ i 的区间都建一个树,每个节点存的都是一个线段树,值存的是当前区间中初始数组按大小排序后[l, r]之间的数的个数,这个l,r指的是每个节点的左右端点。如果想求[l, r]区间内的第k小数,只需要同时遍历[1,l - 1] 以及 [1, r] 两个版本的线段树,因为即使版本不同,线段树的结构是不变的,所以可以发现,如果某个节点区间在老版本里面已经出现了x个数,那么在新版本中的当前区间需要减去x这样才是我们所求的区间里面数的数量,通过查找第k个数的位置找到第k小的数是哪个。

有点乱,直接看代码吧。

using namespace std;
typedef long long ll;
typedef pair<int, int> pii;
typedef pair<int, string> pis;
const int mod = 1e9 + 7;
const int N = 2e6+ 10;
int dx[] = {-1, 0, 1, 0, -1, 1, 1, -1};
int dy[] = {0, 1, 0, -1, 1, 1, -1, -1};
int n, m, idx;
int o[N], root[N];
struct node{
	int l, r;
	int cnt;
}tr[N];
vector<int> nums;

int find(int x){//找到对应的离散值
	return lower_bound(nums.begin(), nums.end(), x) - nums.begin();
}

int build(int l, int r){// 建树
	int p = ++ idx;// 给当前节点分配序号
	if(l == r) return p;// 区间不可再分,直接返回当前节点序号即可
	int mid = l + r >> 1; // 找到区间的中点
	tr[p].l = build(l, mid), tr[p].r = build(mid + 1, r);// 分别对左右儿子进行建树
	return p;// 将当前树的序号返回
}

int insert(int p, int l, int r, int x){// 插入某个元素,p为上一个版本的当前区间的树序号
	int q = ++ idx;// 为当前子树分配序号
	tr[q] = tr[p];  // 继承老版本中当前子树的信息
	if(l == r) {// 需要修改的就是当前位置,将cnt加一即可
		tr[q].cnt ++;
		return q;
	}
	int mid = l + r >> 1;
	if(x <= mid) tr[q].l = insert(tr[p].l, l, mid, x);// 需要插入得位置在左儿子
	else tr[q].r = insert(tr[p].r, mid + 1, r, x);// 在右儿子
	tr[q].cnt = tr[tr[q].l].cnt + tr[tr[q].r].cnt; // 更新当前版本的当前区间的cnt状态
	return q;//返回当前的序号
}

int query(int q, int p, int l, int r, int k){// 查询l,r区间的第k小数,q为当前版本,p为老版本
	if(l == r) return r; // 找到所查元素
	int cnt = tr[tr[q].l].cnt - tr[tr[p].l].cnt;// 通过新老版本的差可以得出当前区间的真实数量
	int mid = l + r >> 1;
	if(k <= cnt) return query(tr[q].l, tr[p].l, l, mid, k);// 再左儿子查左儿子,更新新老版本的左儿子树的序号
	else return query(tr[q].r, tr[p].r, mid + 1, r, k - cnt);// 更新右儿子树的序号,以及新的k的状态
}

inline void sovle() {
	cin >> n >> m;
	for(int i = 1; i <= n; i ++){
		cin >> o[i];
		nums.push_back(o[i]);
	}
	sort(nums.begin(), nums.end());
	nums.erase(unique(nums.begin(), nums.end()), nums.end());//以上都是在进行离散化操作
	
	root[0] = build(0, nums.size() - 1);// 建立一个空的线段树,用于下一次操作继承,哨兵作用
	
	for(int i = 1; i <= n; i ++) // 没差一次就建立一个新版本的树
		root[i] = insert(root[i - 1], 0, nums.size() - 1, find(o[i]));
	
	while(m --){
		int l, r, k;
		cin >> l >> r >> k;
		int i = query(root[r], root[l - 1], 0, nums.size() - 1, k);//查询操作
		cout << nums[i] << endl;	
	}
}

signed main(void) {
	IOS;
	int t = 1;
//	cin >> t;
	while(t --) sovle();
	return 0;
}


http://www.kler.cn/a/145472.html

相关文章:

  • 自定义数据集使用框架的线性回归方法对其进行拟合
  • 侧边导航(Semi Design)
  • 16.好数python解法——2024年省赛蓝桥杯真题
  • 进行提问用什么助动词?E
  • JVM堆空间
  • SpringMVC新版本踩坑[已解决]
  • 计算机组成原理4
  • 【华为OD】B\C卷真题 100%通过:找城市 多叉树实现 python源码
  • python 点云las生成深度图
  • VMware 安装 Centos7 超详细过程
  • 安装Anaconda、PyTorch(GPU版)库与PyCharm】
  • 云原生Kubernetes系列 | Kubernetes静态Pod的使用
  • 安卓使用MediaRecorder录制音频的详细使用
  • 深度学习中的注意力机制:原理、应用与实践
  • 免费苹果APP打包方法有几种
  • Spring原理——基于xml配置文件创建IOC容器的过程
  • 【数据结构】3道经典面试题带你玩转栈与队列
  • Mybatis反射核心类Reflector
  • 微信小程序便民小工具源码
  • FTL-- GC 垃圾回收
  • [ubuntu]ubuntu上如何彻底卸载C++的opencv而不影响下次安装使用
  • 物联网后端个人第十二周总结
  • 有关HarmonyOS-ArkTS的Http通信请求
  • 【已解决】HBase 2.2.6 集群部署后,从节点未启动 HRegionServer
  • 浅用tensorflow天气预测
  • 基于亚马逊云科技大语言模型等服务打造企业知识库