当前位置: 首页 > article >正文

【线性代数与矩阵论】坐标变换与相似矩阵

坐标变换与相似矩阵

2023年11月4日
#algebra


文章目录

  • 坐标变换与相似矩阵
    • 1. 基变换与坐标变换
    • 2. 相似变换
    • 下链


1. 基变换与坐标变换

坐标变换与基变换都要通过过渡矩阵 A A A 来实现。设有一向量 f ⃗ \vec f f x x x 是在基 α \alpha α 下该向量的坐标, y y y 是在新基 β \beta β 下该向量的坐标,则基变换为:
β = α A    ,    A = α − 1 β \beta=\alpha A \,\,,\,\, A= \alpha^ {-1} \beta β=αA,A=α1β
式中的基也是矩阵。当原基 α = I \alpha= I α=I ,过渡矩阵的每一列列向量相当于新的坐标轴的基向量。
坐标变换通过原坐标向量左乘过渡矩阵的逆得到,即:
y = A − 1 x y= A^{-1}x y=A1x
而注意,矩阵在某组基下的表示意味着相似变换。如矩阵 X X X 在基 β \beta β 下的表示为 Y Y Y,意味着
X β = β Y    ,    Y = β − 1 X β X \beta=\beta Y \,\,,\,\, Y=\beta^{-1} X \beta =βY,Y=β1
相当于矩阵的坐标变换,原基相当于单位阵。如果 X X X 又是矩阵 F F F 在某组基 α \alpha α 下的表示,则有
F α = α X    ,    X = α − 1 F α F \alpha= \alpha X \,\,,\,\, X= \alpha^{-1}F \alpha Fα=αX,X=α1Fα
Y = ( α − 1 β ) − 1 F ( α − 1 β ) = A − 1 F A Y=( \alpha^{-1} \beta)^{-1}F( \alpha^{-1} \beta)=A^{-1}FA Y=(α1β)1F(α1β)=A1FA
F F F 的基是单位阵。


2. 相似变换

如果存在可逆矩阵 P {P} P ,使得
B = P − 1 A P B=P^{-1}AP B=P1AP
则称矩阵 A {A} A B {B} B 相似,记为 A ∼ B {A\sim B} AB ;并称 P {P} P 为把 A {A} A 变成B的相似变换矩阵。显然相似即等价。
相似变换与逆矩阵有关,相似变换前后的矩阵为相似矩阵。
性质如下

  1. 反身性 A ∼ A A\sim A AA
  2. 对称性 A ∼ B → B ∼ A A\sim B\to B \sim A ABBA
  3. 传递性 A ∼ B    ,    B ∼ C → A ∼ C A\sim B \,\,,\,\, B\sim C\to A\sim C AB,BCAC

几条定理,若 A ∼ B A\sim B AB

  1. rank ( A ) = rank ( B )    ,    ∣ A ∣ = ∣ B ∣ \text{rank}(A)= \text{rank}(B) \,\,,\,\, |A|=|B| rank(A)=rank(B),A=B
  2. det ⁡ ( λ I − A ) = det ⁡ ( λ I − B ) \det( \lambda I-A)=\det( \lambda I-B) det(λIA)=det(λIB),即特征相同
  3. A − 1 ∼ B − 1    ,    A T ∼ B T    ,    f ( A ) ∼ f ( B ) A^{-1}\sim B^{-1} \,\,,\,\, A^ \mathrm T\sim B^ \mathrm T \,\,,\,\, f(A)\sim f(B) A1B1,ATBT,f(A)f(B)

说明

  • 相似对角化 如果 A n {A_n} An n {n} n 个线性无关的特征向量(特征值可以相同),则相似变换可以把 A {A} A 变成对角阵
  • 实对称矩阵 A {A} A 可以相似对角化, rank ( A ) \text{rank}(A) rank(A) 等于非零特征值的个数
  • 上/下三角矩阵主对角线元素相同则不能相似对角化
  • n {n} n 阶方阵 A {A} A 满足的二次方程有两个互异实根,则因式分解后秩的和为 n {n} n ,且 A {A} A 可相似对角化
    证明
    A 2 − 3 A + 2 I = 0 → ( A − I ) ( A − 2 I ) = 0 A^2-3A+2I=0\to(A-I)(A-2I)=0 A23A+2I=0(AI)(A2I)=0
    ∴ rank ( A − I ) + rank ( A − 2 I ) ≤ n \therefore \text{rank}(A-I)+ \text{rank}(A-2I) \le n rank(AI)+rank(A2I)n
    又   rank ( A − I ) + rank ( A − 2 I ) ≥ rank ( A − I + 2 I − A ) = rank ( I ) = n \text{又}\, \text{rank}(A-I)+ \text{rank}(A-2I)\ge \text{rank}(A-I+2I-A)= \text{rank}(I)=n rank(AI)+rank(A2I)rank(AI+2IA)=rank(I)=n
    ∴ rank ( A − I ) + rank ( A − 2 I ) = n \therefore \text{rank}(A-I)+ \text{rank}(A-2I)=n rank(AI)+rank(A2I)=n
    A {A} A 的线性无关特征向量的个数为
    n − rank ( A − I ) + n − rank ( A − 2 I ) = 2 n − n = n n- \text{rank}(A-I)+ n- \text{rank}(A-2I)=2n-n=n nrank(AI)+nrank(A2I)=2nn=n
  • 相似没有充要条件,有充分条件(矩阵有相同的相似对角化矩阵),也有必要条件(相似则1. 特征值相同 2. 秩相同)。如果特征值相同,而两个矩阵都不可对角化且秩相同,则不能判断矩阵是否相似。

使用相似变换求解LTI微分方程:

[!example]-
{ d d t x 1 = x 2 d d t x 2 = x 3 d d t x 3 = − 6 x 1 − 11 x 2 − 6 x 3 \begin{cases} \frac{\mathrm d}{\mathrm dt}x_1=x_2\\ \frac{\mathrm d }{\mathrm dt}x_2=x_3\\ \frac{\mathrm d }{\mathrm dt}x_3=-6x_1-11x_2-6x_3 \end{cases} dtdx1=x2dtdx2=x3dtdx3=6x111x26x3
解:
A = [ 0 1 0 0 0 1 − 6 − 11 − 6 ]    ,    det ⁡ ( λ I − A ) = ( λ + 1 ) ( λ + 2 ) ( λ + 3 ) A= \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ -6 & -11 & -6 \end{bmatrix} \,\,,\,\, \det(\lambda I-A)=( \lambda+1)( \lambda+2)( \lambda+3) A= 0061011016 ,det(λIA)=(λ+1)(λ+2)(λ+3)
有三个不同的特征值, A {A} A 可对角化。分别解 ( λ k I − A ) x = 0    ,    k = 1 , 2 , 3 (\lambda_k I-A)x=0 \,\,,\,\, k=1,2,3 (λkIA)x=0,k=1,2,3,得变换矩阵
P = ( α 1 , α 2 , α 3 ) = [ 1 1 1 − 1 − 2 − 3 1 4 9 ] P=(\alpha_1,\alpha_2,\alpha_3)= \begin{bmatrix} 1 & 1 & 1 \\ -1 & -2 & -3 \\ 1 & 4 & 9 \end{bmatrix} P=(α1,α2,α3)= 111124139
D = P − 1 A P = [ − 1 0 0 0 − 2 0 0 0 − 3 ] D=P^{-1}AP= \begin{bmatrix} -1 & 0 & 0 \\ 0 & -2 & 0 \\ 0 & 0 & -3 \end{bmatrix} D=P1AP= 100020003
由于 d d t x = A x \frac{\mathrm d }{\mathrm dt}x=Ax dtdx=Ax,令 x = P y x=Py x=Py,有
d y d t = P − 1 d x d t = P − 1 A x = P − 1 A P y = D y = [ − y 1 − 2 y 2 − 3 y 3 ] \frac{\mathrm d y}{\mathrm dt}=P^{-1} \frac{\mathrm d x}{\mathrm dt}=P^{-1}Ax=P^{-1}APy=Dy= \begin{bmatrix} -y_1\\-2y_2\\-3y_3 \end{bmatrix} dtdy=P1dtdx=P1Ax=P1APy=Dy= y12y23y3
y 1 ′ ( t ) = − y 1    ,    y 2 ′ ( t ) = − 2 y 2    ,    y 3 ′ ( t ) = − 3 y 3 y_1'(t)=-y_1 \,\,,\,\, y_2'(t)=-2y_2 \,\,,\,\, y_3'(t)=-3y_3 y1(t)=y1,y2(t)=2y2,y3(t)=3y3
y 1 ( t ) = c 1 e − t    ,    y 2 ( t ) = c 2 e − 2 t    ,    y 3 ( t ) = c 3 e − 3 t y_1(t)=c_1e^{-t} \,\,,\,\, y_2(t)=c_2e^{-2t} \,\,,\,\, y_3(t)=c_3e^{-3t} y1(t)=c1et,y2(t)=c2e2t,y3(t)=c3e3t
x = P y = [ c 1 e − t + c 2 e − 2 t + c 3 e − 3 t − c 1 e − t − 2 c 2 e − 2 t − 3 c 3 e − 3 t c 1 e − t + 4 c 2 e − 2 t + 9 c 3 e − 3 t ] x=Py= \begin{bmatrix} c_1e^{-t}+c_2e^{-2t}+ c_3e^{-3t}\\ -c_1e^{-t}-2c_2e^{-2t}-3c_3e^{-3t}\\ c_1e^{-t}+4c_2e^{-2t}+9 c_3e^{-3t} \end{bmatrix} x=Py= c1et+c2e2t+c3e3tc1et2c2e2t3c3e3tc1et+4c2e2t+9c3e3t


下链

矩阵论 武汉理工大学 (亲测最好的矩阵论视频)



http://www.kler.cn/a/145726.html

相关文章:

  • U3D的.Net学习
  • qml Timer详解
  • 《探秘鸿蒙Next:非结构化数据处理与模型轻量化的完美适配》
  • 卸载和安装Git小乌龟、git基本命令
  • 可以自己部署的微博 Mastodon
  • 【云原生布道系列】第三篇:“软”饭“硬”吃的计算
  • HTML的学习
  • kafka的设计原理
  • FO-like Transformation
  • [ruby on rails] array、jsonb字段
  • Java 文件常用操作与流转换
  • 单细胞seurat入门—— 从原始数据到表达矩阵
  • 隐写-MISC-bugku-解题步骤
  • QXDM Filter使用指南
  • P17C++析构函数
  • java - 定时器
  • 机器学习【04重要】pycharm中关闭jupyter服务器
  • 交叉编译 和 软硬链接 的初识(面试重点)
  • 【面经八股】搜广推方向:常见面试题(五)
  • 流量主如何在广告收益和用户体验中找到平衡
  • 知识点小总结
  • 【单片机学习笔记】STC8H1K08参考手册学习笔记
  • 梦回吹角连营(超1e18的快速幂模板,两大数相乘处理)
  • stm32实现0.96oled图片显示,菜单功能
  • Gin 学习笔记02-参数获取
  • 定制手机套餐---python序列