当前位置: 首页 > article >正文

【C++高阶(五)】哈希思想--哈希表哈希桶

💓博主CSDN主页:杭电码农-NEO💓

⏩专栏分类:C++从入门到精通⏪

🚚代码仓库:NEO的学习日记🚚

🌹关注我🫵带你学习C++
  🔝🔝


在这里插入图片描述

哈希结构

  • 1. 前言
  • 2. unordered系列容器
  • 3. 哈希概念以及哈希结构
  • 4. 哈希表详解(闭散列)
  • 5. 哈希表模拟实现
  • 6. 哈希桶详解(开散列)
  • 7. 哈希桶模拟实现
  • 8. 对于哈希结构的思考

1. 前言

相信大家一定听说过大名鼎鼎的
哈希结构吧,就算是没用过,也听说
过这句话:这道题无脑哈希就能做

哈希,哈希,到底什么是哈希?本篇文章
将带大家彻底搞懂这个问题!

本章重点:

本篇文章着重讲解关联式容器
unordered_map&set的底层结构
以及它们的模拟实现.并且将给大家
介绍unorder系列的接口函数!


2. unordered系列容器

不知道大家在刷题时有没有看见过
unordered_map和unordered_set
它们与map&set是什么关系?
什么时候可以用unordered系列?

带着这些疑问,进行今天的学习:
在这里插入图片描述

  1. unordered_map是存储<key, value>键值对的关联式容器,其允许通过keys快速的索引到与其对应的value。
  2. 在unordered_map中,键值通常用于惟一地标识元素,而映射值是一个对象,其内容与此键关联。键和映射值的类型可能不同。
  3. 在内部,unordered_map没有对<kye, value>按照任何特定的顺序排序
  4. unordered_map容器通过key访问单个元素要比map快,但它通常在遍历元素子集的范围迭代方面效率较低。
  5. unordered_maps实现了直接访问操作符(operator[]),它允许使用key作为参数直接访问value。

可以发现,其实unordered_map和
map使用起来没什么区别,可以说
是一模一样,那么什么时候应该用
unordered系列呢?答案是你只关
心键值对的内容而不关心是否有序
时,选择unordered系列

同理,unordered_set和set的用法
也基本一致,这里就不多做介绍了
如果你不知道map和set的用法,请
先看这篇文章:

map和set的熟悉


3. 哈希概念以及哈希结构

unordered_map&set的底层
结构实际上是哈希桶,也就是
哈希结构,下面来了解一下哈希思想:

最简易的哈希思想,数组下标0到100
存储的值代表数字0到100存不存在

在这里插入图片描述

当然,实际情况下不可能最大值是几
就开辟多大的数组,因为会造成空间
的浪费,哈希的思路一般是根据某种
映射关系,把数据映射到数组中,查找
时也使用同样的映射关系来查找!

在这里插入图片描述
当然,当插入4后再插入14,此时会有问题
因为4这个位置已经被占用了,再次映射到
这个位置明显是行不通的,这个过程被称为
哈希冲突,具体内容会在后面讲解!

哈希结构又分为哈希表和哈希桶
下面就来一一讲解这两个的区别


4. 哈希表详解(闭散列)

引起哈希冲突的一个原因可能是:
哈希函数设计不够合理

在这里插入图片描述
然而不管哈希函数再怎么设计,都不能
完全保证不同的值映射到同一位置,所以
引申出了闭散列和开散列的解决方法

闭散列:也叫开放定址法,当发生哈希冲突时,如果哈希表未被装满,说明在哈希表中必然还有空位置,那么可以把key存放到冲突位置中的“下一个” 空位置中去

寻找下一个空位置的方法有很多,如
线性探测(挨个往后找)
二次探测(以2^i为单位向后找)

这里只讲解线性探测

在这里插入图片描述
插入44后,位置4被占用了就往后找空位

哈希表的删除以及查找操作:

哈希表中的元素如果只是原生数据类型,
那么我们将4删除后,再去查找4肯定是找
不到的,但是此时去查找44也会找不到,因
为44本来应该映射到4位置,但是由于哈希
冲突跑到了8位置,并且我们并不知道它在
哪个位置,所以查找时会找不到!

解决方案:

存储数据不单单存储原生类型
再给每一个位置加上一个状态枚举
分别代表此位置是空,被删除还是有数

// 哈希表每个空间给个标记
// EMPTY此位置空, EXIST此位置已经有元素, DELETE元素已经删除
enum State {EMPTY, EXIST, DELETE};

查找元素时,若此位置是删除或存在
状态就继续向后找,若是空就代表此
元素并不在哈希表中!


5. 哈希表模拟实现

首先我们先将整个结构框架写出来:

enum State
{
	EMPTY,
	EXIST,
	DELETE
};

template<class K, class V>
struct HashData
{
	pair<K, V> _kv;
	State _state;
	HashData(const pair<K, V>& kv = make_pair(0, 0))
		:_kv(kv)
		,_state(EMPTY)
	{ }
};

template<class K, class V>
class HashTable
{
private:
	vector<HashData<K, V>> _table;//数组中存储HashData封装的数据
	size_t _size = 0; //有效数据的个数
};

再来探讨一下插入时的扩容规则:

由于哈希表采用的是向后探测的方法
来存放不同的数据,那么当数据的个数
和数组的大小很接近时,会有很多冲突,
所以在容量到0.7或0.8时就应该要扩容了!
并且在扩容后,数据要重新根据先有的规则
进行挪动,也就是将旧数据挪动到新表!

bool insert(const pair<K, V>& kv)
{
	if (_table.size() == 0 || 10 * _size / _table.size() >= 7) // 扩容
	{
		size_t newSize = _table.size() == 0 ? 10 : _table.size() * 2;
		HashTable<K, V> newHT;
		newHT._table.resize(newSize);
		// 旧表的数据映射到新表
		for (auto e : _table)
		{
			if (e._state == EXIST)
			{
				newHT.insert(e._kv);
			}
		}
		_table.swap(newHT._table);
	}
	size_t index = kv.first % _table.size();//不能模capacity,如果模出来的数大于size了还插入进去了会报错
	//线性探测
	while (_table[index]._state == EXIST)
	{
		index++;
		index %= _table.size();//过大会重新回到起点
	}
	_table[index]._kv = kv;
	_table[index]._state = EXIST;
	_size++;
	return true;
}

HashData<K, V>* find(const K& key)
{
	if (_table.size() == 0)
		return nullptr;

	size_t index = key % _table.size();//负数会提升成无符号数,所以负数不影响结果,但是string类不能取模,需要加入一个仿函数
	size_t start = index;
	while (_table[index]._state != EMPTY)
	{
		if (_table[index]._kv.first == key && _table[index]._state == EXIST)
			return &_table[index];
		index++;
		index %= _table.size();
		if (index == start)//全是DELETE时,必要时会break
			break;
	}
	return nullptr;
}

bool erase(const K& key)
{
	HashData<K, V>* ret = find(key);
	if (ret)
	{
		ret->_state = DELETE;
		--_size;
		return true;
	}
	return false;
}

6. 哈希桶详解(开散列)

开散列法又叫链地址法(开链法),首先对关键码集合用散列函数计算散列地址,具有相同地址的关键码归于同一子集合,每一个子集合称为一个桶,各个桶中的元素通过一个单链表链接起来,各链表的头结点存储在哈希表中

哈希桶实际上是这样的结构:

在这里插入图片描述

看似是一格数据,其实是一个链表指针

并且开散列的扩容旧不需要像
闭散列一样到0.7旧扩容了

在这里插入图片描述

可以把数组的每一个位置想象成
一个抽屉,当你远观时它就是一个
单一的格子,当你仔细把玩时它就
是一个可以拉开的存储结构!


7. 哈希桶模拟实现

首先先把基础框架写出来:

template<class K,class V>
struct HashNode
{
	pair<K, V> _kv;
	HashNode<K, V>* _next;//以单链表的方式链接
	HashNode(const pair<K,V>& kv)
		:_kv(kv)
		,_next(nullptr)
	{}
};

template<class K,class V>
class HashTable
{
	typedef HashNode<K, V> Node;
private:
	vector<Node*> _table;
	size_t _size = 0;//有效数据个数
};

下一步,将新来的元素头插到链表中
因为头插的效率是O(1),并且扩容后
的策略和哈希表一样,重新将数据映射
到新表中

bool insert(const pair<K, V>& kv)
{
	//去重+扩容
	if (find(kv.first))
		return false;
	//负载因子到1就扩容
	if (_size == _table.size())
	{
		vector<Node*> newT;
		size_t newSize = _table.size() == 0 ? 10 : _table.size() * 2;
		newT.resize(newSize, nullptr);
		//将旧表中的节点移动到新表
		for (int i = 0; i < _table.size(); i++)
		{
			Node* cur = _table[i];
			while (cur)
			{
				Node* next = cur->_next;
				size_t hashi = cur->_kv.first % newT.size();
				cur->_next = newT[hashi];
				newT[i] = cur;
				cur = next;
			}
			_table[i] == nullptr;
		}
		_table.swap(newT);
	}
	size_t hashi = kv.first % _table.size();
	//头插
	Node* newnode = new Node(kv);
	newnode->_next = _table[hashi];
	_table[hashi] = newnode;
	++_size;
	return true;
}

Node* find(const K& key)
{
	if (_table.size() == 0)
		return nullptr;
	size_t hashi = key % _table.size();
	Node* cur = _table[hashi];
	while (cur)//走到空还没有就是没用此数据
	{
		if (cur->_kv.first == key)
			return cur;
		cur = cur->_next;
	}
	return nullptr;
}

bool erase(const K& key)
{
	Node* ret = find(key);
	if (ret == nullptr)
		return false;
	size_t hashi = key % _table.size();
	Node* cur = _table[hashi];
	Node* prev = nullptr;
	while (cur && cur->_kv.first != key)//找到要删除的节点
	{
		prev = cur;
		cur = cur->_next;
	}
	Node* next = cur->_next;
	if (cur == _table[hashi])//注意头删的情况
		_table[hashi] = next;
	else
		prev->_next = next;
	delete cur;
	cur = nullptr;
	_size--;
	return true;
}

对代码的解释都在注释中,还有问题欢迎私信!


8. 对于哈希结构的思考

我们会发现一个问题,不管是哈希
表还是哈希桶,都用到了cur.first模
上一个数,但是如果cur.first不是整型
不能取模怎么办?(如字符串)

这时需要在哈希类中再传入一个模板
参数,此模板参数为仿函数,只需将写好
的仿函数传入即可进行取模,比如string
仿函数可以这样写:

template<>
struct HashFunc<string>
{
	//BKDR算法:将字符串转换为整数
	size_t operator()(const string& str)
	{
		size_t sum = 0;
		for (auto ch : str)
		{
			sum *= 131;
			sum += (size_t)ch;
		}

		return sum;//将字符的asc码全部加起来再返回
	}
};

🔎 下期预告:哈希思想的应用🔍

http://www.kler.cn/a/146216.html

相关文章:

  • lvm快照备份技术详细知识点
  • 深入理解 SQL 中的 DATEDIFF 函数
  • PTA L1-039 古风排版
  • Unity HybridCLR Settings热更设置
  • 从零搭建SpringBoot3+Vue3前后端分离项目基座,中小项目可用
  • LLM - 大模型 ScallingLaws 的 CLM 和 MLM 中不同系数(PLM) 教程(2)
  • 皮尔逊相关性分析的matlab实现,简介和实例
  • Go 基本语法
  • 数智赋能 锦江汽车携手苏州金龙打造高质量盛会服务
  • 删除巨大文本文件的最后一行
  • 《斯坦福数据挖掘教程·第三版》读书笔记(英文版)Chapter 3 Finding Similar Items
  • STM32 CAN协议讲解以及代码
  • CSS水平居中与垂直居中的方法
  • 【K8s 网络】Linux网络虚拟化与TCP/IP网络
  • Facebook的特点优势
  • Oracle 中的操作符
  • C++基础 -3- 匿名空间,命名空间跨文件使用
  • 格雷希尔针对J2044燃油管测试专用快速接头都有哪些及各自的应用场合
  • Vatee万腾的科技冒险:Vatee独特探索力量的数字化征程
  • coreelec与安卓 双系统共存-默认CoreElec引导后10秒计时进入android插件
  • Java游戏制作——王者荣耀
  • 【React】Memo
  • 【活动回顾】ABeam 德硕| 艾宾信息技术开发(西安)西北高校行——与西北三所高校签订校企合作协议
  • python opencv -模板匹配
  • IM通信技术快速入门:短轮询、长轮询、SSE、WebSocket
  • python类和对象