当前位置: 首页 > article >正文

详解—C++三大特性——多态

目录

一. 多态的概念

1.1 概念

二. 多态的定义及实现

2.1多态的构成条件

2.2 虚函数

2.3虚函数的重写

2.3.1虚函数重写的两个例外:

1. 协变(基类与派生类虚函数返回值类型不同)

2. 析构函数的重写(基类与派生类析构函数的名字不同)

2.4 C++11 override 和 final

2.4.1 final

2.4.2 override

2.5 重载、覆盖(重写)、隐藏(重定义)的对比

三. 抽象类

3.1概念

3.2 接口继承和实现继承

四.多态的原理

4.1虚函数表

4.2多态的原理

4.3 动态绑定与静态绑定


一. 多态的概念


1.1 概念


多态的概念:通俗来说,就是多种形态,具体点就是去完成某个行为,当不同的对象去完成时会产生出不同的状态。

举个栗子:比如买票这个行为,当普通人买票时,是全价买票;学生买票时,是半价买票;军人买票时是优先买票。

二. 多态的定义及实现

2.1多态的构成条件

多态是在不同继承关系的类对象,去调用同一函数,产生了不同的行为。比如Student继承了Person。Person对象买票全价,Student对象买票半价。

那么在继承中要构成多态还有两个条件:

1. 必须通过基类的指针或者引用调用虚函数
2. 被调用的函数必须是虚函数,且派生类必须对基类的虚函数进行重写

2.2 虚函数

虚函数:即被virtual修饰的类成员函数称为虚函数.

class Person
{
public:
	virtual void BuyTicked()
	{
		cout << "全价买票" << endl;
	}
};

2.3虚函数的重写

虚函数的重写(覆盖):派生类中有一个跟基类完全相同的虚函数(即派生类虚函数与基类虚函数的返回值类型、函数名字、参数列表完全相同),称子类的虚函数重写了基类的虚函数。

class Person
{
public:
	virtual void BuyTicked()
	{
		cout << "全价买票" << endl;
	}
};

class Student :public Person
{
public:
	virtual void BuyTicked()
	{
		cout << "半价买票" << endl;
	}
};

void Func(Person & person)
{
	person.BuyTicked();
}

void Test()
{
	Person p;
	Func(p);

	Student s;
	Func(s);
}

2.3.1虚函数重写的两个例外:

1. 协变(基类与派生类虚函数返回值类型不同)

派生类重写基类虚函数时,与基类虚函数返回值类型不同。即基类虚函数返回基类对象的指针或者引用,派生类虚函数返回派生类对象的指针或者引用时,称为协变。

class A {};
class B : public A {};
class Person {
public:
	virtual A* f() { return new A; }
};
class Student : public Person {
public:
	virtual B* f() { return new B; }
};
2. 析构函数的重写(基类与派生类析构函数的名字不同)

如果基类的析构函数为虚函数,此时派生类析构函数只要定义,无论是否加virtual关键字,都与基类的析构函数构成重写,虽然基类与派生类析构函数名字不同。虽然函数名不相同,看起来违背了重写的规则,其实不然,这里可以理解为编译器对析构函数的名称做了特殊处理,编译后析构函数的名称统一处理成destructor。

class Person
{
public:
	virtual ~Person()
	{
		cout << "~Person" << endl;
	}
};

class Student :public Person
{
	virtual ~Student()
	{
		cout << "~Student" << endl;
	}
};

int main()
{
	Person* p1 = new Person;
	Person* p2 = new Student;
	delete p1;
	delete p2;

	return 0;
}

2.4 C++11 override 和 final

从上面可以看出,C++对函数重写的要求比较严格,但是有些情况下由于疏忽,可能会导致函数名字母次序写反而无法构成重载,而这种错误在编译期间是不会报出的,只有在程序运行时没有得到预期结果才来debug会得不偿失,因此:C++11提供了override和final两个关键字,可以帮助用户检测是否重写。

2.4.1 final

final:修饰虚函数,表示该虚函数不能再被继承

2.4.2 override

override: 检查派生类虚函数是否重写了基类某个虚函数,如果没有重写编译报错。

2.5 重载、覆盖(重写)、隐藏(重定义)的对比
 

三. 抽象类

3.1概念

在虚函数的后面写上 =0 ,则这个函数为纯虚函数。包含纯虚函数的类叫做抽象类(也叫接口类),抽象类不能实例化出对象。派生类继承后也不能实例化出对象,只有重写纯虚函数,派生类才能实例化出对象。纯虚函数规范了派生类必须重写,另外纯虚函数更体现出了接口继承

class Car
{
public:
	virtual void Drivate() = 0;
};

class Benz : public Car
{
public :
	virtual void Drivate()
	{
		cout << "Benz" << endl;
	}
};

class BMW : public Car
{
public:
	virtual void Drivate()
	{
		cout << "BMW" << endl;
	}
};



int main()
{
	Car* pBenz = new Benz;
	pBenz->Drive();
	Car* pBMW = new BMW;
	pBMW->Drive();


	return 0;
}

3.2 接口继承和实现继承

普通函数的继承是一种实现继承,派生类继承了基类函数,可以使用函数,继承的是函数的实现。虚函数的继承是一种接口继承,派生类继承的是基类虚函数的接口,目的是为了重写,达成多态,继承的是接口。所以如果不实现多态,不要把函数定义成虚函数。

四.多态的原理


4.1虚函数表

首先我们先看下面的代码,sizeof(Base)的大小是多少

class Base
{
public:
virtual void Func1()
{
cout << "Func1()" << endl;
}
private:
int _b = 1;
};

通过观察测试我们发现b对象是8bytes,除了_b成员,还多一个__vfptr放在对象的前面(注意有些平台可能会放到对象的最后面,这个跟平台有关),对象中的这个指针我们叫做虚函数表指针(v代表virtual,f代表function)。一个含有虚函数的类中都至少都有一个虚函数表指针,因为虚函数的地址要被放到虚函数表中,虚函数表也简称虚表,。那么派生类中这个表放了些什么呢?我们接着往下分析

// 针对上面的代码我们做出以下改造
// 1.我们增加一个派生类Derive去继承Base
// 2.Derive中重写Func1
// 3.Base再增加一个虚函数Func2和一个普通函数Func3
class Base
{
public:
	virtual void Func1()
	{
		cout << "Base::Func1()" << endl;
	}virtual void Func2()
	{
		cout << "Base::Func2()" << endl;
	}
	void Func3()
	{
		cout << "Base::Func3()" << endl;
	}
private:
	int _b = 1;
};
class Derive : public Base
{
public:
	virtual void Func1()
	{
		cout << "Derive::Func1()" << endl;
	}
private:
	int _d = 2;
};

int main()
{
	Base b;
	Derive d;
	return 0;
}

通过观察和测试,我们发现了以下几点问题:
 

1. 派生类对象d中也有一个虚表指针,d对象由两部分构成,一部分是父类继承下来的成员,虚表指针也就是存在部分的另一部分是自己的成员。


2. 基类b对象和派生类d对象虚表是不一样的,这里我们发现Func1完成了重写,所以d的虚表中存的是重写的Derive::Func1,所以虚函数的重写也叫作覆盖,覆盖就是指虚表中虚函数的覆盖。重写是语法的叫法,覆盖是原理层的叫法


3. 另外Func2继承下来后是虚函数,所以放进了虚表,Func3也继承下来了,但是不是虚函数,所以不会放进虚表。


4. 虚函数表本质是一个存虚函数指针的指针数组,这个数组最后面放了一个nullptr。


5. 总结一下派生类的虚表生成:a.先将基类中的虚表内容拷贝一份到派生类虚表中 b.如果派生类重写了基类中某个虚函数,用派生类自己的虚函数覆盖虚表中基类的虚函数 c.派生类自己新增加的虚函数按其在派生类中的声明次序增加到派生类虚表的最后。


6. 这里还有一个很容易混淆的问题:虚函数存在哪的?虚表存在哪的? 答:虚函数存在虚表,虚表存在对象中。注意上面的回答的错的。但是很多人都是这样深以为然的。注意虚表存的是虚函数指针,不是虚函数,虚函数和普通函数一样的,都是存在代码段的,只是他的指针又存到了虚表中。另外对象中存的不是虚表,存的是虚表指针。那么虚表存在哪的呢?实际我们去验证一下会发现vs下是存在代码段的,Linux g++下大家自己去验证?

4.2多态的原理

上面分析了这个半天了那么多态的原理到底是什么?还记得这里Func函数传Person调用的
Person::BuyTicket,传Student调用的是Student::BuyTicket

class Person {
public:
	virtual void BuyTicket()
	{
		cout << "买票-全价" << endl;
	}
};

class Student : public Person {
public:
	virtual void BuyTicket()
	{ 
		cout << "买票-半价" << endl;
	}
};
void Func(Person& p)
{
	p.BuyTicket();
}
int main()
{
	Person Mike;
	Func(Mike);
	Student Johnson;
	Func(Johnson);
	return 0;
}

1. 观察下图的红色箭头我们看到,p是指向mike对象时,p->BuyTicket在mike的虚表中找到虚函数是Person::BuyTicket。
2. 观察下图的蓝色箭头我们看到,p是指向johnson对象时,p->BuyTicket在johson的虚表中找到虚函数是Student::BuyTicket。
3. 这样就实现出了不同对象去完成同一行为时,展现出不同的形态。
4. 反过来思考我们要达到多态,有两个条件,一个是虚函数覆盖,一个是对象的指针或引用调用虚函数。反思一下为什么?
5. 再通过下面的汇编代码分析,看出满足多态以后的函数调用,不是在编译时确定的,是运行起来以后到对象的中取找的。不满足多态的函数调用时编译时确认好的

4.3 动态绑定与静态绑定

1. 静态绑定又称为前期绑定(早绑定),在程序编译期间确定了程序的行为,也称为静态多态,比如:函数重载
2. 动态绑定又称后期绑定(晚绑定),是在程序运行期间,根据具体拿到的类型确定程序的具体行为,调用具体的函数,也称为动态多态。
3. 买票的汇编代码很好的解释了什么是静态(编译器)绑定和动态(运行时)绑定。


http://www.kler.cn/a/147026.html

相关文章:

  • node-sass@4.14.1报错的最终解决方案分享
  • Spring——自动装配
  • 利用obs studio制作(人像+屏幕)录制影像
  • Gin框架如何使用并搭建一个后台管理系统(五)
  • python opencv 演示示例
  • Go语言的学习笔记3——Go语言项目布局
  • maven中scope和optional区别
  • hadoop源码解读
  • opencv-利用DeepLabV3+模型进行图像分割去除输入图像的背景
  • Redis之C语言底层数据结构笔记
  • UE5富文本框学习(用途:A(名字)用刀(图片)击杀B(名字))
  • Nginx的location块相关知识积累(包括常用的正则匹配表达式的介绍)
  • PLC ST语言经典电路之 一键启停 和 时钟脉冲
  • cadence virtuoso simulation文件夹删除
  • 文件元数据批量修改:mp3音频和mp4视频的元数据如何批量修改
  • ARM异常模型
  • 基于51单片机的超声波测距系统【程序+proteus仿真+参考论文+原理图+PCB等16个文件夹资料】
  • Flutter 开发入门文章汇总
  • HNU 练习八 结构体编程题2. 招聘
  • 一对一连接MODBUS转PROFINET网关TS-182技术特点和主要参数
  • 为何要隐藏IP地址?网络上哪些行为需要隐藏IP和更换IP?
  • 某思路等考通一级MSOffice的分析
  • 15:00面试,15:06就出来了,问的问题有点变态。。。