AI - Steering behaviors(转向系统)
游戏AI角色的转向系统(Steering behaviors)实现
一些向量的接口是cocos2dx的。但从名字上应该能理解做了什么向量操作
Seek:
获取当前位置指向目标点的向量,转化为单位向量后再乘以速度值,即为所需速度desired velocity,所需速度减去当前速度current velocity,即为seek的转向力,将角色推向目标
//追逐转向力
Vec2 MoveNode::seek(Vec2 seekPos){
if (seekPos == Vec2(-1, -1)) return Vec2::ZERO;
Vec2 normalVector = (seekPos - this->getPosition()).getNormalized();
float dist = this->getPosition().getDistance(seekPos);
Vec2 desiredVelocity = normalVector * _dtSpeed;
Vec2 steering;
if (MoveSmooth) steering = desiredVelocity - _velocity;
else steering = desiredVelocity;
return steering;
}
物体在追逐目标时,会有一个逐渐转弯的过程
如果,没有转向力的话,物体就是直接切换方向
Flee
与seek类似,只是所需速度desired velocity的方向,是由目标点指向当前位置。
这里在逃离目标点加了个检测半径,在这个范围里的物体将会受到逃离力。
//躲避转向力
Vec2 MoveNode::flee() {
Vec2 steering = Vec2::ZERO;
if(_fleePos == Vec2::ZERO) return steering;
if (this->getPosition().getDistance(_fleePos) < _fleeRadius) {
Vec2 normalVector = (this->getPosition() - _fleePos).getNormalized();
Vec2 desiredVelocity = normalVector * _dtSpeed;
if (MoveSmooth) steering = desiredVelocity - _velocity;
else steering = desiredVelocity;
}
return steering;
}
逃离时的转向效果
与没有转向力直接逃离的效果对比
arrive
因为seek力的存在,所以在到达目标点时,会在目标点附近来回弹跳
为此在目标点周围添加一个减速场slowing area。在目标点周围一定范围内,当物体越靠近目标时,seek力会越小。seek力大小在减速带范围内线性减小,与目标点的距离成反比。而在范围外,则是正常的seek力大小
//追逐转向力
Vec2 MoveNode::seek(Vec2 seekPos){
if (seekPos == Vec2(-1, -1)) return Vec2::ZERO;
Vec2 normalVector = (seekPos - this->getPosition()).getNormalized();
float dist = this->getPosition().getDistance(seekPos);
Vec2 desiredVelocity = normalVector * _dtSpeed;
//靠近目标减速带
if (dist < _tarSlowRadius) desiredVelocity *= (dist / _tarSlowRadius);
Vec2 steering;
if (MoveSmooth) steering = desiredVelocity - _velocity;
else steering = desiredVelocity;
return steering;
}
Wander
漫游:巡逻,在物体前进方向的前方一定范围_circleDistance内,画个圆,用来计算受力行为。位移力 以圆心为原点,受半径_circleRadius约束。半径越大以及角色到圆圈的距离越大,角色在每个游戏帧中受到的“推力”就越强。
初始会给一个方向wander angle,之后每帧会在一定的转向范围_changeAngle内随机一个转角方向。改变物体巡逻的方向wander angle
我在这里加了一个巡逻范围_wanderPullBackSteering,当偏离一定范围时,会受到回拉的力
Vec2 MoveNode::changeAngle(Vec2 vector, float angle) {
float rad = angle * M_PI / 180;
float len = vector.getLength();
Vec2 v;
v.x = len * cos(rad);
v.y = len * sin(rad);
return v;
}
Vec2 MoveNode::wander() {
if (_wanderPos == Vec2(-1, -1)) return Vec2::ZERO;
Vec2 circleCenter = _velocity.getNormalized();
circleCenter *= _circleDistance;
Vec2 displacement = Vec2(0, -1);
displacement *= _circleRadius;
displacement = changeAngle(displacement, _wanderAngle);
float randomValue = RandomHelper::random_real<float>(-0.5f, 0.5f);
_wanderAngle = _wanderAngle + randomValue * _changeAngle;
Vec2 wanderForce = circleCenter - displacement;
float dist = this->getPosition().getDistance(_wanderPos);
if (dist > _wanderRadius) {
// 偏离漫游点一定范围的话,给个回头力
Vec2 desiredVelocity = (_wanderPos - this->getPosition()).getNormalized() * _wanderPullBackSteering;
desiredVelocity -= _velocity;
wanderForce += desiredVelocity;
}
return wanderForce;
}
Pursuit
追捕某个物体,实际上就是seek到某个位置,只不过这个位置需要预测追捕目标将来的位置target in the future来seek,而不能以追捕目标当前位置来seek
预测的位置即目标当前位置+目标当前速度加一定帧数T。如果T的值是个常数时会出现一个问题:当目标很近时,追击精度往往会变差。这是因为当目标接近时,追击者会继续寻找目标位置的进行预测,也就是“远离”T帧后的位置。因此可以用动态T 值代替常量T 值
新的T值为目标从当前位置移动到追击者位置还需要更新多少次
Vec2 MoveNode::pursuit() {
if (_pursuitObj == nullptr) return Vec2::ZERO;
Vec2 pursuitPos = _pursuitObj->getPosition();
float t = this->getPosition().getDistance(pursuitPos) / _dtSpeed;
//float t = 3;
Vec2 tarPos = pursuitPos + _pursuitObj->getVelocity() * t;
//Vec2 tarPos = pursuitPos;
return seek(tarPos);
}
没有预测的追捕的话,就会一直沿着追捕目标的路径一直跟在后面
Evading
躲避,与追捕类似,只不过将预测目标的位置用来做flee,而不是做seek
Combining Steering Forces
多种力是可以相互结合的,以向量的形式相加,得到物体最终受到的力
void MoveNode::update(float dt)
{
_dtSpeed = _speed * dt;
if (MoveSmooth) {
Vec2 steering = Vec2::ZERO;
steering += seek(_tarPos);
steering += flee();
steering += wander();
steering += pursuit();
steering = turncate(steering, _maxForce);
steering *= ( 1 / (float)_mass );
_velocity += steering;
}
else {
_velocity += seek(_tarPos);
_velocity += flee();
_velocity += wander();
_velocity += pursuit();
}
_velocity += wallAvoid();
_velocity = turncate(_velocity, _maxSpeed * dt);
updatePos();
}
下面是一个物体,受到多个正在漫游目标产生的逃离力的影响,同时还有寻求到目标的力 的例子
源码
MoveNode.h
#ifndef __MOVE_NODE_H__
#define __MOVE_NODE_H__
#include "cocos2d.h"
USING_NS_CC;
using namespace std;
class MoveNode : public Node
{
public:
static MoveNode* create();
CC_CONSTRUCTOR_ACCESS:
virtual bool init() override;
void setId(int id) { _id = id; };
void setDirect(DrawNode* direct) { _direct = direct; };
void setSpeed(float speed) { _speed = speed; };
void setMaxForce(float maxForce) { _maxForce = maxForce; };
void setMass(float mass) { _mass = mass; };
void setMaxSpeed(float maxSpeed) { _maxSpeed = maxSpeed; };
void setTarSlowRadius(float tarSlowRadius) { _tarSlowRadius = tarSlowRadius; };
void setFleeRadius(float fleeRadius) { _fleeRadius = fleeRadius; };
void setCircleDistance(float circleDistance) { _circleDistance = circleDistance; };
void setCircleRadius(float circleRadius) { _circleRadius = circleRadius; };
void setChangeAngle(float changeAngle) { _changeAngle = changeAngle; };
void setWanderRadius(float wanderRadius) { _wanderRadius = wanderRadius; };
void setWanderPullBackSteering(float wanderPullBackSteering) { _wanderPullBackSteering = wanderPullBackSteering; };
void setPos(Vec2 pos);
void setTarPos(Vec2 tarPos) { _tarPos = tarPos; };
void setFleePos(Vec2 fleePos) { _fleePos = fleePos; };
void setFleeObjs(vector<MoveNode*> fleeObjs) { _fleeObjs = fleeObjs; };
void setWanderPos(Vec2 wanderPos);
void switchPursuitObj(MoveNode* pursuitObj);
Vec2 seek(Vec2 seekPos);
Vec2 flee();
Vec2 wander();
Vec2 pursuit();
Vec2 wallAvoid();
Vec2 turncate(Vec2 vector, float maxNumber);
Vec2 changeAngle(Vec2 vector, float angle);
void updatePos();
void update(float dt);
int getId() { return _id; };
Vec2 getVelocity(){ return _velocity; };
void setVelocity(Vec2 velocity) { _velocity = velocity; };
protected:
DrawNode* _direct;
int _id;
float _speed; //速度
float _maxForce; //最大转向力,即最大加速度
float _mass; //质量
float _maxSpeed; //最大速度
float _tarSlowRadius; //抵达目标减速半径
float _fleeRadius; //逃离目标范围半径
float _circleDistance; //巡逻前方圆点距离
float _circleRadius; //巡逻前方圆半径
float _changeAngle; //巡逻转向最大角度
float _wanderRadius; //巡逻点范围半径
float _wanderPullBackSteering; //超出巡逻范围拉回力
float _dtSpeed; //每帧速度值
Vec2 _velocity; //速度
float _wanderAngle; //巡逻角度
Vec2 _wanderPos; //巡逻范围中心点
Vec2 _tarPos; //目标点
Vec2 _fleePos; //逃离点
MoveNode* _pursuitObj; //追逐目标
vector<MoveNode*> _fleeObjs; //逃离目标
float wallAvoidRadius = 50.0f; //墙壁碰撞检测半径
};
#endif
MoveNode.cpp
#include "MoveNode.h"
bool MoveSmooth = true;
MoveNode* MoveNode::create() {
MoveNode* moveNode = new(nothrow) MoveNode();
if (moveNode && moveNode->init()) {
moveNode->autorelease();
return moveNode;
}
CC_SAFE_DELETE(moveNode);
return nullptr;
}
bool MoveNode::init()
{
_tarPos = Vec2(-1, -1);
_wanderPos = Vec2(-1, -1);
_velocity.setZero();
_pursuitObj = nullptr;
this->scheduleUpdate();
return true;
}
void MoveNode::update(float dt)
{
_dtSpeed = _speed * dt;
if (MoveSmooth) {
Vec2 steering = Vec2::ZERO;
steering += seek(_tarPos);
steering += flee();
steering += wander();
steering += pursuit();
steering = turncate(steering, _maxForce);
steering *= ( 1 / (float)_mass );
_velocity += steering;
}
else {
_velocity += seek(_tarPos);
_velocity += flee();
_velocity += wander();
_velocity += pursuit();
}
_velocity += wallAvoid();
_velocity = turncate(_velocity, _maxSpeed * dt);
updatePos();
}
Vec2 MoveNode::wallAvoid() {
Vec2 temp = _velocity.getNormalized();
temp *= wallAvoidRadius;
Vec2 tarPos = this->getPosition() + temp;
if (!Rect(Vec2::ZERO, Director::getInstance()->getVisibleSize()).containsPoint(tarPos)) {
Vec2 steering = Vec2::ZERO;
if (tarPos.y >= Director::getInstance()->getVisibleSize().height) steering += Vec2(0, -1);
if (tarPos.y <= 0) steering += Vec2(0, 1);
if (tarPos.x >= Director::getInstance()->getVisibleSize().width) steering += Vec2(-1, 0);
if (tarPos.x <= 0) steering += Vec2(1, 0);
return steering * _dtSpeed;
}
return Vec2::ZERO;
}
void MoveNode::updatePos() {
Vec2 tarPos = this->getPosition() + _velocity;
if (!Rect(Vec2::ZERO, Director::getInstance()->getVisibleSize()).containsPoint(tarPos)) {
_velocity = _velocity *= -100;
}
Vec2 directPos = _velocity.getNormalized() *= 5;
_direct->setPosition(directPos);
this->setPosition(tarPos);
if (_velocity == Vec2::ZERO) _tarPos = Vec2(-1, -1);
}
Vec2 MoveNode::turncate(Vec2 vector, float maxNumber) {
if (vector.getLength() > maxNumber) {
vector.normalize();
vector *= maxNumber;
}
return vector;
}
//追逐转向力
Vec2 MoveNode::seek(Vec2 seekPos){
if (seekPos == Vec2(-1, -1)) return Vec2::ZERO;
Vec2 normalVector = (seekPos - this->getPosition()).getNormalized();
float dist = this->getPosition().getDistance(seekPos);
Vec2 desiredVelocity = normalVector * _dtSpeed;
//靠近目标减速带
if (dist < _tarSlowRadius) desiredVelocity *= (dist / _tarSlowRadius);
Vec2 steering;
if (MoveSmooth) steering = desiredVelocity - _velocity;
else steering = desiredVelocity;
return steering;
}
//躲避转向力
Vec2 MoveNode::flee() {
Vec2 steering = Vec2::ZERO;
if (!_fleeObjs.empty()) {
for (auto eludeObj : _fleeObjs) {
auto fleePos = eludeObj->getPosition();
if (fleePos.getDistance(this->getPosition()) < _fleeRadius) {
Vec2 normalVector = (this->getPosition() - fleePos).getNormalized();
Vec2 desiredVelocity = normalVector * _dtSpeed;
Vec2 steeringChild;
if (MoveSmooth) steeringChild = desiredVelocity - _velocity;
else steeringChild = desiredVelocity;
steering += steeringChild;
}
}
return steering;
}
if(_fleePos == Vec2::ZERO) return steering;
if (this->getPosition().getDistance(_fleePos) < _fleeRadius) {
Vec2 normalVector = (this->getPosition() - _fleePos).getNormalized();
Vec2 desiredVelocity = normalVector * _dtSpeed;
if (MoveSmooth) steering = desiredVelocity - _velocity;
else steering = desiredVelocity;
}
return steering;
}
Vec2 MoveNode::changeAngle(Vec2 vector, float angle) {
float rad = angle * M_PI / 180;
float len = vector.getLength();
Vec2 v;
v.x = len * cos(rad);
v.y = len * sin(rad);
return v;
}
Vec2 MoveNode::wander() {
if (_wanderPos == Vec2(-1, -1)) return Vec2::ZERO;
Vec2 circleCenter = _velocity.getNormalized();
circleCenter *= _circleDistance;
Vec2 displacement = Vec2(0, -1);
displacement *= _circleRadius;
displacement = changeAngle(displacement, _wanderAngle);
float randomValue = RandomHelper::random_real<float>(-0.5f, 0.5f);
_wanderAngle = _wanderAngle + randomValue * _changeAngle;
Vec2 wanderForce = circleCenter - displacement;
float dist = this->getPosition().getDistance(_wanderPos);
if (dist > _wanderRadius) {
// 偏离漫游点一定范围的话,给个回头力
Vec2 desiredVelocity = (_wanderPos - this->getPosition()).getNormalized() * _wanderPullBackSteering;
desiredVelocity -= _velocity;
wanderForce += desiredVelocity;
}
return wanderForce;
}
Vec2 MoveNode::pursuit() {
if (_pursuitObj == nullptr) return Vec2::ZERO;
Vec2 pursuitPos = _pursuitObj->getPosition();
float t = this->getPosition().getDistance(pursuitPos) / _dtSpeed;
//float t = 3;
// Vec2 tarPos = pursuitPos + _pursuitObj->getVelocity() * t;
Vec2 tarPos = pursuitPos;
return seek(tarPos);
}
void MoveNode::setPos(Vec2 pos) {
this->setPosition(pos);
_velocity.setZero();
}
void MoveNode::setWanderPos(Vec2 wanderPos) {
_wanderPos = wanderPos;
setPos(wanderPos);
}
void MoveNode::switchPursuitObj(MoveNode* pursuitObj) {
if (_pursuitObj == nullptr) _pursuitObj = pursuitObj;
else {
_pursuitObj = nullptr;
_velocity = Vec2::ZERO;
_tarPos = Vec2(-1, -1);
}
}