当前位置: 首页 > article >正文

ChatGLM2-6B微调过程说明文档

参考文档:

ChatGLM2-6B 微调(初体验) - 知乎

  1. 环境配置

下载anaconda,版本是Anaconda3-2023.03-0-Linux-x86_64.sh,其对应的python版本是3.10,试过3.7和3.11版本的在运行时都报错。

执行下面的命令安装anaconda

 sh Anaconda3-2023.03-0-Linux-x86_64.sh

进入安装过程,根据提示输入即可,会自动配置好环境变量和pip等

下载代码

git clone GitHub - hiyouga/ChatGLM-Efficient-Tuning: Fine-tuning ChatGLM-6B with PEFT | 基于 PEFT 的高效 ChatGLM 微调

cd ChatGLM-Efficient-Tuning

如果服务器不能联网,可以在自己电脑上下载好,上传到服务器的对应目录

安装依赖

pip install -r requirements.txt

  1. 下载模型

从 Hugging Face Hub 下载模型实现和参数 到本地,后期使用 只需要 从本地下载即可。

git lfs install

git clone https://huggingface.co/THUDM/chatglm2-6b

  1. 知识产权数据集准备

通过ChatGPT生成问答预料文本

例如:

prompt:

根据以下内容,生成10道简答题和答案,生成的答案需要详细,知识点完整:

在电影《天下无贼》中,演员刘德华和刘若英扮演的一对夫妇开着骗得的宝马轿车驶 入别墅区大门时,保安不但没有上前询问,反而立正敬礼。刘德华扮演的男主角将车倒回, 拍着宝马车问保安: “开好车你就不问,开好车就可以随便进入,开好车就一定是好人 吗?!”这个问题令人沉思。的确,观众们需要扪心自问:人们在追求以豪车、名表和名牌 服装等为象征的奢华生活和“面子”时,是否忽视了物质外壳之下的美丽灵魂?然而,电 影中的这一幕揭示了一个现实,如 “宝马”这样的驰名商标彰显了拥有者的身份与地位, 满足了消费者的心理需求,其作用有别于普通商标。与之相适应,商标法对驰名商标提供 了特别保护。

驰名商标是指经过长期使用或大量商业推广与宣传,在市场上享有很高知名度并为相 关公众所熟知的商标。与普通商标相比,驰名商标具有以下几个特点。

首先,驰名商标在相关公众中具有很高的知名度。

将返回的数据整理成md文档,如下图

每个章节生成的问题和回答数据达到5w字以上,全部生成完成之后,将文本内容处理成json格式,python代码如下:

import json
import os
import re


def process_md(md_text):
    qa_list = []

    # 使用正则表达式分割问题和答案
    qa_pairs = re.split(r'\n\n+', md_text)

    for pair in qa_pairs:
        question_match = re.match(r'^\s*(.*)\s*答:\s*(.*?)\s*$', pair, re.DOTALL)
        if question_match:
            #question = question_match.group(1)
            question = re.sub(r'^\d+\.\s*', '', question_match.group(1)).rstrip("\n")
            answer = question_match.group(2)
            qa = {
                "content": question,
                "summary": answer
            }
            qa_list.append(qa)
    return qa_list


def main():
    input_directory = "md_files"  # 替换为包含Markdown文件的目录
    output_directory = "formatted_qa"  # 输出文件的目录


    if not os.path.exists(output_directory):
        os.makedirs(output_directory)

    output_filename = os.path.join(output_directory, "content.json")
    output_file=open(output_filename, 'w', encoding='utf-8')

    for filename in os.listdir(input_directory):
        if filename.endswith(".md"):
            with open(os.path.join(input_directory, filename), 'r', encoding='utf-8') as file:
                md_text = file.read()

            qa_list = process_md(md_text)
            json.dump(qa_list, output_file, ensure_ascii=False, indent=2)
            print(f"转换完成,结果已保存到{output_filename}")
if __name__ == "__main__":
    main()

结果文档如下:

  1. ChatGLM2-6B模型微调

命令行训练

CUDA_VISIBLE_DEVICES=0 python src/train_bash.py \

    --stage sft \

    --model_name_or_path /home/liq/zw/chatglm2/chatglm2-6b \

    --do_train \

    --dataset zscq \

    --dataset_dir ./data \

    --finetuning_type lora \

    --output_dir /home/liq/zw/data/chatglm2-6b-lora-zscq \

    --per_device_train_batch_size 1 \

    --gradient_accumulation_steps 1 \

    --lr_scheduler_type cosine \

    --logging_steps 10 \

    --save_steps 1000 \

    --learning_rate 5e-5 \

    --num_train_epochs 3.0 \

    --fp16

开始训练

训练完成

命令行测试

python src/cli_demo.py \

    --model_name_or_path /home/liq/zw/chatglm2/chatglm2-6b \

    --checkpoint_dir /home/liq/zw/data/chatglm2-6b-lora-zscq/checkpoint-19000 \

    --quantization_bit 4

进入问答界面

输入问题,得到对应回答

导出微调模型

python src/export_model.py \

    --model_name_or_path /home/liq/zw/chatglm2/chatglm2-6b \

    --checkpoint_dir /home/liq/zw/data/chatglm2-6b-lora/checkpoint-19000 \

    --output_dir /home/liq/zw/chatglm2-6b-lora-zscq2

查看模型内容


http://www.kler.cn/a/147268.html

相关文章:

  • vue3 如何调用第三方npm包内部的 pinia 状态管理库方法
  • 问:说说SpringDAO及ORM的用法?
  • 孙赢利_11月17日_超分周报
  • CPU执行指令的过程
  • Vue中的导航守卫有哪三种?分别有什么作用
  • 校园二手交易网站毕业设计基于SpringBootSSM框架
  • C语言基础篇5:指针(二)
  • C#,《小白学程序》第三课:类class,类的数组及类数组的排序
  • 在Spring Boot中使用@Async异步任务的线程池
  • Selenium 连接到现有的 Firefox 示例
  • C语言--每日选择题--Day27
  • buuctf web [极客大挑战 2019]PHP
  • app分发平台应用费用一般要怎么评估的?
  • diffusion model (九) EmuEdit技术小结
  • Docker-简介、基本操作
  • Langchain-Chatchat学习
  • [vxe-table] vxe-table-column配合v-if导致列样式与位置错乱
  • 文章解读与仿真程序复现思路——电力系统保护与控制EI\CSCD\北大核心《基于深度强化学习的城市配电网多级动态重构优化运行方法》
  • 学习c#的第二十四天
  • 最近数据分析面试的一点感悟...
  • 聚观早报 |魅族21搭载超声波指纹2.0;华为长安成立新公司
  • 研习代码 day42 | 动态规划——买卖股票的最佳时机 I II
  • unity学习笔记10
  • CF 1900B Laura and Operations 学习笔记
  • ETL+BI结合的数据集成工具
  • 了解FastSam:一个通用分割模型(草记)