当前位置: 首页 > article >正文

概率论与数理统计中常见的随机变量分布律、数学期望、方差及其介绍

1 离散型随机变量

1.1 0-1分布

设随机变量X的所有可能取值为0与1两个值,其分布律为

在这里插入图片描述

若分布律如上所示,则称X服从以P为参数的(0-1)分布或两点分布。记作X~ B(1,p)

0-1分布的分布律利用表格法表示为:

X01
P1-PP

0-1分布的数学期望E(X) = 0 * (1 - p) + 1 * p = p

1.2 二项分布

二项分布的分布律如下所示:

在这里插入图片描述

其中P是事件在一次试验中发生的概率,称随机变量X服从参数为n,p 的二项分布,记作X~B(n,p)。当n=1时,X为(0-1)分布

二项分布利用表格法也可表示为:

在这里插入图片描述
二项分布的数学期望E(X) = np

1.3 泊松分布

设随机变量X所有可能取值是0,12,…,而取各个值的概率为

在这里插入图片描述

其中λ>0是常数,则称随机变量 X 服从泊松分布,记为 X ~ π(λ)

泊松分布利用表格法可表示为:

在这里插入图片描述
在这里插入图片描述
泊松分布的数学期望E(X) = λ

泊松分布的方差D(X) = λ

1.4 几何分布

记X在独立重复试验中事件A首次发生所进行试验的次数,则

在这里插入图片描述
我们称随机变量X服从几何分布,记作X~G§。

几何分布利用表格法也可表示为:

在这里插入图片描述
几何分布的数学期望E(X) = 1/p

几何分布的方差D(X) = (1-p)/(p*p)

1.5 超几何分布

设有N件产品,其中有M(MSN)件次品。从中任取n(nN)件产品,用X表示取出的n件产
品中次品的件数,则

在这里插入图片描述
我们称随机变量X服从参数为N、M、n的超几何分布

注意:超几何分布为不放回抽样。

2 连续性随机变量

2.1 均匀分布

2.1.1 均匀分布的密度函数

若连续型随机变量X的概率密度

在这里插入图片描述

则称f(x)在(a,b)上服从均匀分布,记作X~U(a,b)

2.1.2 均匀分布的分布函数及图像

均匀分布的分布函数为:

在这里插入图片描述
f(x)与F(x)分别如图所示:

在这里插入图片描述

2.1.3 均匀分布的数学期望及其方差

均匀分布的数学期望E(X) = ( a + b ) / 2

均匀分布的方差D(X) = (( b - a ) ^ 2) / 12

2.2 指数分布

2.2.1 指数分布的概率密度

若连续型随机变量X概率密度为:

在这里插入图片描述
其中λ>0为常数,则称X 服从参数为的指数分布。记作X~ E(λ)

2.2.2 指数分布的分布函数及图像

随机变量X的分布函数和图像为:

在这里插入图片描述
在这里插入图片描述

2.2.3 指数分布的数学期望及其方差

指数分布的数学期望E(X) = 1 / λ

指数分布的方差D(X) = 1 / (λ ^ 2)

2.3 正太分布

2.3.1 一般正太分布的密度函数、分布概率及其图像

若连续型随机变量X的概率密度和图像为:
在这里插入图片描述
在这里插入图片描述

其中μ,σ( σ > 0)为常数,则称服从参数为,的正态分布,记作X~ N(μ, σ * σ),分布函数为:

在这里插入图片描述

2.3.2 标准正太分布的密度函数、分布概率及其图像

当参数 u=0,σ=1时称随机变量X 服从标准正态分布,记作X~N(0,1)。其概率密度及分布函数如下所示:

在这里插入图片描述
在这里插入图片描述
概率密度图像如下所示:

在这里插入图片描述
其概率密度函数的图形如图 (9)所示。由(x)的图形,不难得出如下性质:

在这里插入图片描述

2.3.3 正太分布的数学期望及其方差

正太分布的数学期望E(X) = u

正太分布的方差D(X) = σ

3 数学期望的性质

下面给出数学期望常见的性质:

  1. 设C是常数,则有E(C)=C。
  2. 设X是一个随机变量,C为常数,则有 E(CY)=CE(Y)
  3. 设X,Y为两个随机变量,则E(X+Y)=E(Y)+E(Y)
  4. 设X,Y 为相互独立的随机变量,则 E(XY)=E(Y)·E(Y)

数学期望E(X)和方差D(X)之间的关系:

在这里插入图片描述

4 方差

4.1 方差的性质

  1. 设C为常数,则D©=0。

  2. @设X是随机变量,C是常数,则有 D(CX)=C^2D(X),D(X+C)=D(X)

  3. 设XY是两个随机变量,则有在这里插入图片描述特别地,若X与Y相互独立,则有D(X+Y)=D(X)+D(Y),D(X-Y)=D(X)+D(Y)

  4. D(Y)=0的充分必要条件是以概率为1 取常数 E(X),即P{ X=E(X) } = 1

4.2 协方差和相关系数

协方差公式: cov(X,Y) = E(XY) - EXEY

协方差公式的几个变形:

在这里插入图片描述
相关系数ρxy公式如下:

在这里插入图片描述


http://www.kler.cn/a/152117.html

相关文章:

  • docker 推送tar包到远程仓库
  • 互联网协议入门( 通俗易懂的网络协议层次结构讲解)
  • HAProxy简写
  • 数值分析总结
  • 安全攻击及防范手册
  • 【UE】UEC++委托代理
  • tomcat控制台中文信息显示乱码
  • 分治法之二分查找
  • 智能优化算法应用:基于生物地理学算法无线传感器网络(WSN)覆盖优化 - 附代码
  • Spring Security 的使用
  • vue运用el-table常见问题及案例代码
  • C语言第四十弹---两个整数二进制位不同的个数
  • VUE2+THREE.JS辉光设定和解决辉光导致背景变暗的问题
  • 2分图匹配算法
  • web:catcat-new(文件包含漏洞、flask_session伪造)
  • 和鲸科技与国科环宇建立战略合作伙伴关系,以软硬件一体化解决方案促进科技创新
  • 在CentOS 7.9上搭建高性能的FastDFS+Nginx文件服务器集群并实现外部远程访问
  • C#常见的设计模式-创建型模式
  • sql中的left join, right join 和inner join,union 与union all的用法
  • Redis未授权访问-CNVD-2019-21763复现