当前位置: 首页 > article >正文

Azure Machine Learning - 使用 Azure OpenAI 服务生成文本

使用 Azure OpenAI 服务生成文本

关注TechLead,分享AI全维度知识。作者拥有10+年互联网服务架构、AI产品研发经验、团队管理经验,同济本复旦硕,复旦机器人智能实验室成员,阿里云认证的资深架构师,项目管理专业人士,上亿营收AI产品研发负责人。

file

环境准备

  • Azure 订阅 - 免费创建订阅

  • 已在所需的 Azure 订阅中授予对 Azure OpenAI 的访问权限

    目前,仅应用程序授予对此服务的访问权限。 可以通过在 https://aka.ms/oai/access 上填写表单来申请对 Azure OpenAI 的访问权限。

  • Python 3.7.1 或更高版本

  • 以下 Python 库:os、requests、json

  • 已部署 gpt-35-turbo-instruct 模型的 Azure OpenAI 服务资源。

设置

使用以下项安装 OpenAI Python 客户端库:

  • [OpenAI Python 0.28.1]
  • [OpenAI Python 1.x]
pip install openai==0.28.1
pip install openai

检索密钥和终结点

若要成功对 Azure OpenAI 服务发出调用,需要准备好以下各项:

变量名称
ENDPOINT从 Azure 门户检查资源时,可在“密钥和终结点”部分中找到此值。 也可在“Azure OpenAI Studio”>“操场”>“代码视图”中找到该值。 示例终结点为:https://docs-test-001.openai.azure.com/
API-KEY从 Azure 门户检查资源时,可在“密钥和终结点”部分中找到此值。 可以使用 KEY1KEY2
DEPLOYMENT-NAME此值将对应于在部署模型时为部署选择的自定义名称。 此值可在 Azure 门户中的“资源管理”>“部署”下,或者在 Azure OpenAI Studio 中的“管理”>“部署”下找到此值。

在 Azure 门户中转到你的资源。 可以在“资源管理”部分找到“终结点和密钥”。 复制终结点和访问密钥,因为在对 API 调用进行身份验证时需要这两项。 可以使用 KEY1KEY2。 始终准备好两个密钥可以安全地轮换和重新生成密钥,而不会导致服务中断。
file
为密钥和终结点创建和分配持久环境变量。

环境变量

为密钥和终结点创建和分配持久环境变量。

  • [命令行]
  • [PowerShell]
  • [Bash]
setx AZURE_OPENAI_KEY "REPLACE_WITH_YOUR_KEY_VALUE_HERE" 
setx AZURE_OPENAI_ENDPOINT "REPLACE_WITH_YOUR_ENDPOINT_HERE" 
[System.Environment]::SetEnvironmentVariable('AZURE_OPENAI_KEY', 'REPLACE_WITH_YOUR_KEY_VALUE_HERE', 'User')
[System.Environment]::SetEnvironmentVariable('AZURE_OPENAI_ENDPOINT', 'REPLACE_WITH_YOUR_ENDPOINT_HERE', 'User')
echo export AZURE_OPENAI_KEY="REPLACE_WITH_YOUR_KEY_VALUE_HERE" >> /etc/environment && source /etc/environment
echo export AZURE_OPENAI_ENDPOINT="REPLACE_WITH_YOUR_ENDPOINT_HERE" >> /etc/environment && source /etc/environment

创建新的 Python 应用程序

  1. 创建名为 quickstart.py 的新 Python 文件。 然后在你偏好的编辑器或 IDE 中打开该文件。

  2. 将 quickstart.py 的内容替换为以下代码。 修改代码以添加密钥、终结点和部署名称:

  • [OpenAI Python 0.28.1]
  • [OpenAI Python 1.x]
import os
import openai

openai.api_key = os.getenv("AZURE_OPENAI_KEY")
openai.api_base = os.getenv("AZURE_OPENAI_ENDPOINT") # your endpoint should look like the following https://YOUR_RESOURCE_NAME.openai.azure.com/
openai.api_type = 'azure'
openai.api_version = '2023-05-15' # this might change in the future

deployment_name='REPLACE_WITH_YOUR_DEPLOYMENT_NAME' #This will correspond to the custom name you chose for your deployment when you deployed a model. 

# Send a completion call to generate an answer
print('Sending a test completion job')
start_phrase = 'Write a tagline for an ice cream shop. '
response = openai.Completion.create(engine=deployment_name, prompt=start_phrase, max_tokens=10)
text = response['choices'][0]['text'].replace('\n', '').replace(' .', '.').strip()
print(start_phrase+text)
import os
from openai import AzureOpenAI
    
client = AzureOpenAI(
    api_key=os.getenv("AZURE_OPENAI_KEY"),  
    api_version="2023-10-01-preview",
    azure_endpoint = os.getenv("AZURE_OPENAI_ENDPOINT")
    )
    
deployment_name='REPLACE_WITH_YOUR_DEPLOYMENT_NAME' #This will correspond to the custom name you chose for your deployment when you deployed a model. 
    
# Send a completion call to generate an answer
print('Sending a test completion job')
start_phrase = 'Write a tagline for an ice cream shop. '
response = client.completions.create(model=deployment_name, prompt=start_phrase, max_tokens=10)
print(response.choices[0].text)
  1. 使用快速入门文件中的 python 命令运行应用程序:

    python quickstart.py
    

输出

输出将包含 Write a tagline for an ice cream shop. 提示后的响应文本。 在此示例中,Azure OpenAI 返回了 The coldest ice cream in town!

Sending a test completion job
Write a tagline for an ice cream shop. The coldest ice cream in town!

再运行代码几次,以查看会得到其他哪些类型的响应,因为响应并不始终相同。

理解结果

由于我们的 Write a tagline for an ice cream shop. 示例提供的上下文有限,因此模型通常不会始终返回预期结果。 如果响应似乎是意外响应或被截断,可以调整最大令牌数。

Azure OpenAI 还会对提示输入和生成的输出执行内容审核。 检测到有害内容时,可能会筛选提示或响应。

关注TechLead,分享AI全维度知识。作者拥有10+年互联网服务架构、AI产品研发经验、团队管理经验,同济本复旦硕,复旦机器人智能实验室成员,阿里云认证的资深架构师,项目管理专业人士,上亿营收AI产品研发负责人。


http://www.kler.cn/a/159194.html

相关文章:

  • Cesium特效——城市白模的科技动效的各种效果
  • 禁止 iOS 系统浏览器双指放大页面
  • WordPress Hunk Companion插件节点逻辑缺陷导致Rce漏洞复现(CVE-2024-9707)(附脚本)
  • 重构(4)
  • GPT 结束语设计 以nanogpt为例
  • 再见 Crontab!Linux 定时任务的新选择!
  • vue打包完成后出现空白页原因及解决
  • 第二十五章 控制到 XML 模式的映射 - 将文字属性映射到 XML 模式
  • 学习mongoDB
  • 【6】PyQt信号和槽
  • Python语言基础学习大纲(由某大模型生成)
  • uniapp基于u-grid-item九宫格实现uCharts秋云图表展示
  • 软著项目推荐 深度学习的智能中文对话问答机器人
  • Qt之QCache和QContiguousCache
  • 第19章 正则表达式 - C++
  • Flink-执行拓扑图与作业调度
  • MacOS 14挂载NTFS 硬盘的最佳方式(免费)
  • CoreDNS实战(五)-接入prometheus监控
  • 【蓝桥杯选拔赛真题28】C++口罩分配 第十三届蓝桥杯青少年创意编程大赛C++编程选拔赛真题解析
  • JavaScript基础知识21——for循环
  • 分包(微信小程序)
  • 网络安全(三)-- 网络嗅探及协议分析技术
  • maven环境搭建
  • 如何使用llm 制作多模态
  • Spatial Data Analysis(三):点模式分析
  • vue表格合计 计算 保留两位小数