当前位置: 首页 > article >正文

深入理解Sentinel系列-1.初识Sentinel

  • 👏作者简介:大家好,我是爱吃芝士的土豆倪,24届校招生Java选手,很高兴认识大家
  • 📕系列专栏:Spring源码、JUC源码、Kafka原理、分布式技术原理
  • 🔥如果感觉博主的文章还不错的话,请👍三连支持👍一下博主哦
  • 🍂博主正在努力完成2023计划中:源码溯源,一探究竟
  • 📝联系方式:nhs19990716,加我进群,大家一起学习,一起进步,一起对抗互联网寒冬👀

文章目录

  • 限流的作用
  • 限流的算法
    • 计数器
    • 滑动窗口
    • 漏桶
    • 令牌桶
  • 限流的实现
  • Sentinel
    • 服务熔断
    • demo
    • Sentinel中的流量控制

对于后端来说,我们需要提供一些接口去进行交互,比如登陆注册,支付下单等这样的一些功能,所以我们需要搭建一个整体的架构,早期的话可能没那么复杂,就是通过ssm框架组成的架构,然后通过部署tomcat来提供一个端口,随着整个并发量上去之后,我们需要去提供高性能的服务。

当我们的客户端,用户量的访问大了之后,对于后端系统的并发量会更高,并发量越高对于后端整个处理的能力就是一个挑战,因为我们需要保证,用户从10个到10000个的时候,我们需要提供给用户的是 它的响应时间不能超过多少。因为用户的操作是存在一个心理预期的,这就是所谓的用户体验。其次就是系统是否能够支撑这么大的量,是否会挂掉,挂掉之后网站无法提供对外服务的情况下,你无法产生商业价值。

比如说双十一零点的时候,那一瞬间瞬时的流量一定会大于正常时间的吞吐量,所以需要采用一定的机制来限流

限流的作用

  • 保护系统避免被瞬时流量冲垮
  • 预防恶意请求(如果自己公司不提供安全的话,可以去买高防的服务器)

  • 针对请求进行限制

服务器能支撑的连接数是多少

接口的处理能力(QPS/TPS),可以使用Jmeter来测试平均响应时间

资源限制(cpu(线程池)、内存、网络资源)


  • 如何控制流量

限流的指标(可以容纳的流量、已经容纳的流量、可以接受的流量) 阈值(基于这个指标)

限流的过程(通过算法来实现)

限流的结果(处理策略)

限流的算法

计数器

(Zookeeper:RequestThrottle 限流阀)、线程池大小、连接数大小

滑动窗口

实际上发送方和接收方都维护了一个滑动窗口

在这里插入图片描述

当发送端发送了一个数据包,等到接收端接收到后,接收端窗口开始滑动,发送端需要等待返回后才能滑动

在这里插入图片描述

其限流的核心就是流量只能在这个窗口里面,但是在tcp里面,其窗口是可以灵活的扩大的,其会根据当前网络拥挤的程度来决定窗口大小。

最大只能发送五个(阈值),超过了就不能发送了

在这里插入图片描述

所以说io通信是一个阻塞通信其实就是这样,基于数据包处理的结果,等到这个数据返回,如果数据一直不返回,那么这个时候请求是阻塞的。

漏桶

(用来控制传输速率的)本质上控制的是发送者的速度

在这里插入图片描述

流入水滴的速率代表的是请求,而滴出水滴的速度代表是处理的请求,不管来的请求有多少,但是能够处理的请求就这么多。

漏桶算法的特点:

  • 水的流出速度是固定的
  • 桶的大小也是固定的

令牌桶

在这里插入图片描述

其恒定的生成速率决定了并发数,假如说我每秒生成10个令牌,那么我的qps 就是 10

令牌桶对比漏桶的区别是,其能够处理瞬时突发流量,而不像漏桶一样,流出的速度是固定的。

令牌桶的设计:

  • 桶的大小

  • 令牌标记

  • 定时任务生成令牌

  • 提供令牌获取的接口

限流的实现

Semphore 信号量

分布式限流

其大小怎么计算呢?通过压测来进行计算

//单机实现
//令牌桶算法
    RateLimiter rateLimiter=RateLimiter.create(10); //TPS=10

    public void doRequest(){
        if(rateLimiter.tryAcquire()){ //获取令牌
            System.out.println("success");
        }else{
            System.out.println("failed");
        }
    }
// 令牌桶不需要释放,处理完后自动丢弃

Sentinel

Sentinel 是阿里中间件团队开源的,面向分布式服务架构的轻量级高可用流量控制组件,主要以流量为切入点,从流量控制、熔断降级、系统负载保护等多个维度来帮助用户保护服务的稳定性。

在这里插入图片描述

其中对于Sentinel最重要的两个东西:

  • 资源(需要被保护的东西)
  • 规则(限流的规则/熔断规则)

在这里插入图片描述

所有的流量经过这个组件后,会根据这个规则去控制这个流量来进行处理。

而熔断是一个这样的概念:

在这里插入图片描述

上图存在很多相互调用的情况,里面存在很多服务调用的链路,当Service D出现故障,会导致G F阻塞,间接的又会导致A B阻塞,如果特别多的请求阻塞在这里之后,会占用特别多的资源,内存、服务器、cpu的资源,这时候会导致服务器因为大量的资源被占用而导致其他问题。

当出现这种情况的时候,会触发一种熔断的方式,熔断以后会触发降级。

服务熔断

Sentinel的服务熔断有两种方式:基于响应时间的熔断和基于异常比率的熔断。基于响应时间的熔断是根据服务的响应时间来判断是否需要熔断,当服务的响应时间超过设定的阈值时,触发熔断。基于异常比率的熔断是根据服务的异常比率来判断是否需要熔断,当服务的异常比率超过设定的阈值时,触发熔断。这两种方式可以根据具体的业务场景和需求来选择使用。

demo

public static void main(String[] arg) {
        initFlowRule(); //初始化限流规则
        while(true){
            //ResourceName表示资源,控制访问流量的点
            /*try(Entry entry=SphU.entry("helloWorld")){
                System.out.println("hello world");
            }catch (BlockException e){
                System.out.println("被拒绝");
            }*/
            if (SphO.entry("helloWorld")) {
                System.out.println("Hello World");
                SphO.exit();// 释放
            }
        }
    }
    private static void initFlowRule(){
        List<FlowRule> rules=new ArrayList<>();
        FlowRule flowRule=new FlowRule();
        flowRule.setResource("helloWorld"); //针对那个资源设置规则
        flowRule.setGrade(RuleConstant.FLOW_GRADE_QPS);//QPS或者并发数
        flowRule.setCount(5); //QPS=5
        rules.add(flowRule);
        FlowRuleManager.loadRules(rules);
    }

Demo 运行之后,我们可以在日志 ~/logs/csp/${appName}-metrics.log.xxx 里看到下面的输出:`

-timestamp- -date time - -resource- 5表示, 通过的请求, block: 被拒绝的请
求 ,
1600608724000|2023-09-20 21:32:04|helloWorld|5|6078|5|0|5|0|0|0
1600608725000|2023-09-20 21:32:05|helloWorld|5|32105|5|0|0|0|0|0
1600608726000|2023-09-20 21:32:06|helloWorld|5|41084|5|0|0|0|0|0
1600608727000|2023-09-20 21:32:07|helloWorld|5|72211|5|0|0|0|0|0
1600608728000|2023-09-20 21:32:08|helloWorld|5|60828|5|0|0|0|0|0
1600608729000|2023-09-20 21:32:09|helloWorld|5|41696|5|0|0|0|0|0

@RestController
public class SentinelController {

    @Autowired
    TestService testService;

    @GetMapping("/hello/{name}")
    public String sayHello(@PathVariable("name") String name){
        return testService.doTest(name);
    }
}


@Service
public class TestService {

    @SentinelResource(value = "doTest",blockHandler ="blockHandler",fallback = "fallback") //声明限流的资源
    public String doTest(String name){
        return "hello , "+name;
    }
    public String blockHandler(String name, BlockException e){ //降级,限流触发的
       return "被限流了";
    }
    // 降级和限流是不一样的,限流可以触发降级,降级是因为已经被触发了
    // 降级是第三方业务调用的时候,针对下游的一个返回
    // 限流是针对当前服务访问的限制
    // 这两个配置只会调用一个
    public String fallback(String name){ //降级,熔断触发的
        return "被降级了";
    }

}


@SpringBootApplication
public class SpringbootSentinelApplication {

    public static void main(String[] args) {
        initFlowRule();
        SpringApplication.run(SpringbootSentinelApplication.class, args);
    }

    private static void initFlowRule(){
        List<FlowRule> rules=new ArrayList<>();
        FlowRule flowRule=new FlowRule();
        flowRule.setResource("doTest"); //针对那个资源设置规则
        flowRule.setGrade(RuleConstant.FLOW_GRADE_QPS);//QPS或者并发数
        flowRule.setCount(5); //QPS=5
        rules.add(flowRule);
        FlowRuleManager.loadRules(rules);
    }


}

Sentinel中的流量控制

维度 + 规则 + 资源

不管是通过什么样的方式,其核心原理就是,监控应用流量的qps或者并发线程数的指标,然后去判断这些指标的阈值去对流量进行控制,防止瞬时流量高峰导致系统被压垮。

SphU.entry(resourceName) ->

正常,则通过

被限制,抛出 FlowException( FlowException extends BlockException)

同一个资源也可以创建不同的规则,这个主要是通过List rules=new ArrayList<>();实现的,如果有多个规则,会去遍历,如果发现那个规则被触发则就执行,否则就顺利通过。

一个规则由什么组成?

  • resource 资源
  • count 阈值
  • grade 类型(基于QPS 还是 并发线程数)
  • limitApp,针对的调用来源.
  • strategy , 调用关系限流
  • controlBehavior . (直接拒绝, 冷启动,匀速排队)

http://www.kler.cn/a/160328.html

相关文章:

  • VSCode Live Server 插件安装和使用
  • CRMEB多商户商城系统JAVA版 B2B2C商家入驻平台系统独立版全开源
  • 抢十八游戏
  • 迅为RK3568开发板篇OpenHarmony配置HDF驱动控制LED-配置创建私有配置文件
  • 金融项目实战 02|接口测试分析、设计以及实现
  • 【Elasticsearch7.11】postman批量导入少量数据
  • 【WPF】扫描的方式发现局域网中的Android设备
  • 利用阿里云 DDoS、WAF、CDN 和云防火墙为在线业务赋能
  • 笔记67:Transformer
  • springboot 接口文档
  • 【基于openGauss5.0.0简单使用DBMind】
  • AWS Remote Control ( Wi-Fi ) on i.MX RT1060 EVK - 2 “架构 AWS”
  • 会声会影2024软件还包含了视频教学以及模板素材
  • Linux 导入、导出 MySQL 数据库命令
  • AIGC之Image2Video(一)| Animate Anyone:从静态图像生成动态视频,可将任意图像角色动画化
  • 企业数字档案馆室建设指南
  • SQL手工注入漏洞测试(Access数据库)-墨者
  • 【Openstack Train】十六、swift安装
  • vue 学习 -- day39(reactive 对比 ref)
  • 基于深度学习yolov5行人社交安全距离监测系统
  • 探索鸿蒙_ArkTs开发语言
  • 亚马逊云科技Serverless视频内容摘要提取方案
  • 如何调用 API | 学习笔记
  • 动手学习深度学习-跟李沐学AI-自学笔记(3)
  • arcgis导出某个属性的栅格
  • 【开源】基于Vue.js的房屋出售出租系统