当前位置: 首页 > article >正文

MySQL 学习笔记(刷题篇)

SQL进阶挑战

增删改操作

MySQL 插入数据

SQL 110(插入)

date类型的数据插入,也用引号括起来,日期和时间之间用空格隔开

# 表已经建好了,一次插入多个即可
INSERT INTO exam_record values(1 , 1001, 9001, '2021-09-01 22:11:12','2021-09-01 23:01:12', 90), (2, 1002, 9002, '2021-09-04 07:01:02',null, null);
# 看表结构可以发现 id 是一个自增的
# 把id的值设置为NULL或0,这样MySQL会自己处理这个自增的id列
INSERT INTO exam_record values
(null, 1001, 9001, '2021-09-01 22:11:12','2021-09-01 23:01:12', 90), 
(null, 1002, 9002, '2021-09-04 07:01:02',null, null);

SQL 111(插入)

新表exam_record_before_2021已创建好;
第一列为自增主键列,不能直接复制过去;
只复制2021年之前的记录;
只复制已完成了的试题作答纪录;

# 把要复制的列枚举出来,这时的自增的id列是null,但是mysql会自动处理
insert into exam_record_before_2021(uid, exam_id, start_time, submit_time, score)
select uid, exam_id, start_time, submit_time, score
from exam_record
where date_format(submit_time, '%Y') < 2021

SQL 112(插入)

这个题直接插入会显示数据重复
replace 如果插入的数据记录存在就先删除再更新,不存在则直接新增记录

replace into examination_info values
(null, 9003, 'SQL', 'hard', 90, '2021-01-01 00:00:00')

SQL 114(更新)

set 多个字段时,逗号连接即可

update exam_record set submit_time = '2099-01-01 00:00:00', score  = 0
where score is null
and date_format(start_time, '%Y%m%d') < '20210901'

SQL 115(删除)

delete from exam_record
where timestampdiff(minute, start_time, submit_time) < 5
and score < 60

SQL 116(删除)

delete from exam_record
where score is null
or timestampdiff(minute, start_time, submit_time) < 5
limit 3

SQL 117(删除全部)

这个题提交有bug

删除记录的方式汇总:
根据条件删除:DELETE FROM tb_name WHERE options ORDER BY fields LIMIT n
全部删除(表清空,包含自增计数器重置):TRUNCATE TABLE tb_name
TRUNCATE TABLE用于删除表中的所有行,而不记录单个行删除操作;TRUNCATE TABLE 与没有 WHERE 子句的 DELETE 语句类似,但是,TRUNCATE TABLE 速度更快,使用的系统资源和事务日志资源更少

TRUNCATE table  exam_record;

表与索引操作

MySQL 表的创建、复制、修改与删除

SQL 118(建表)

commit 添加字段或列的注释
需要修改字符编码

create table user_info_vip(
    id int(11) primary key auto_increment comment '自增ID',
    uid int(11) not null unique comment '用户ID',
    nick_name varchar(64) comment '昵称',
    achievement int(11) default 0 comment '成就值',
    level int(11) comment '用户等级',
    job varchar(32) comment '职业方向',
    register_time datetime default current_timestamp comment '注册时间'
) default charset = utf8
# 字符编码默认是utf8mb4,需要将默认编码改成UTF8才能通过

SQL 119(修改表)

alter table user_info add school varchar(15) after level; # 增加列在某列之后
# alter table 表格名 add 字段名 数据类型 位置(after level)

alter table user_info change job profession varchar(10); # 更换列的名称及数据类型
# alter table user_info change 原列名 修改列名 修改数据类型

alter table user_info modify achievement int(11) default 0; # 更改数据类型
# alter table 表名 modify 修改列名称 数据类型 默认值等

SQL120(删除表)

DROP TABLE IF EXISTS exam_record_2011, exam_record_2012, exam_record_2013, exam_record_2014;

一个一个删

drop table exam_record_2011;
drop table exam_record_2012;
drop table exam_record_2013;
drop table exam_record_2014;

SQL 121(创建索引)

create index idx_duration on examination_info(duration);
create unique index uniq_idx_exam_id on examination_info(exam_id);
create fulltext index full_idx_tag on examination_info(tag);

SQL122(删除索引)

# 删除索引时不用指明类型,直接给出索引名和表名即可
drop index uniq_idx_exam_id on examination_info;
drop index full_idx_tag on examination_info;

聚合分组查询

SQL123

select tag, difficulty, 
    round((sum(score) - max(score) - min(score) ) / (count(score) - 2) ,1)
as clip_avg_score
from examination_info as ei, exam_record as er
where ei.exam_id = er.exam_id  
and ei.tag = 'SQL'  
and ei.difficulty = 'hard' 
and er.score is not null;

SQL124

IF(expr1 , expr2 , expr3),expr1的值为TRUE 返回 expr2,否则返回 expr3
使用 distinct 是需要考虑 null 的,它会把 null 也算成一种情况
但是使用 count(字段) 是不用考虑 null 的,它不会计 null 为一种情况

select count(id) as total_pv, 
count(submit_time) as complete_pv, 
count(distinct if(submit_time is not null, exam_id, null)) as complete_exam_cnt
from exam_record
select count(id) as total_pv, 
count(submit_time) as complete_pv, 
count(distinct exam_id and score is not null) as complete_exam_cnt
from exam_record

SQL125

# 这样写为什么就错?
select min(score) as min_score_over_avg
from exam_record  #这样写没有保证查询的试卷类型是SQL
where score >= (
    select avg(score)
    from exam_record as er , examination_info as ei
    where ei.tag = 'SQL'
    and ei.exam_id = er.exam_id
    and er.score is not null
);
# correct
select min(score) as min_score_over_avg
from exam_record as er , examination_info as ei
where ei.tag = 'SQL'
and ei.exam_id = er.exam_id
and er.score is not null
and score >= (
    select avg(score)
    from exam_record as er
    where er.exam_id = ei.exam_id
    and er.score is not null
);

SQL126

题目:按年月进行分组,统计每组的用户id个数(也就是这个月有多少活跃用户),统计每组的用户活跃天数的平均值(总天数/总人数)
总天数计算方法: ∑ i = 1 i = l a s t − u s e r 第 i 个用户一个月内的登录天数之和 \sum_{i=1}^{i=last-user} 第i个用户一个月内的登录天数之和 i=1i=lastuseri个用户一个月内的登录天数之和

DATE_FORMAT(date,fmt) 按照字符串 fmt 格式化日期 date
YEAR(date) / MONTH(date) / DAY(date) 返回具体的日期值

count( distinct uid, date_format(submit_time, '%y%m%d') ),这里的知识点:count函数内本只能接收一个参数,distinct 修饰是所有字段的,并不是修饰一个字段
语句含义:去掉一个用户在一天内的多次登录计数的重复计数,保证如果同一用户在同一天进行了多次活动,只有一次会被计数。

select date_format(submit_time, '%Y%m') as month, # %Y四位年份,%m两位数字月份
    round( count(distinct uid, date_format(submit_time, '%y%m%d') )  / count(distinct uid) , 2) as avg_active_days,
    count(distinct uid) as mau #统计组内不同用户id数量
from exam_record
where submit_time is not null
and year(submit_time) = 2021
group by date_format(submit_time, '%Y%m') # 按照年月分组

SQL127(COALESCE)

select date_format(submit_time, '%Y%m') as submit_month,
    count(distinct uid, submit_time) as month_q_cnt,
    round(count(distinct uid, submit_time) 
    / max(DAY(LAST_DAY(submit_time))) #这里必须用一个聚合函数,由于汇总时的天数按31算,因此用max最为合适,day+lasy_day一起得到当月的天数
    , 3) as avg_day_q_cnt
from practice_record
where year(submit_time) = '2021' #过滤字段写到分组前
group by submit_month

union

select '2021汇总' as submit_month,
count(distinct uid, submit_time) as month_q_cnt,
round(count(distinct uid, submit_time) / 31, 3) as avg_day_q_cnt
from practice_record
where year(submit_time) = '2021'

order by submit_month;

COALESCE 是一个函数,coalesce (expression_1, expression_2, …,expression_n) ,依次检验,返回第一个不是 null 的值
只有两个参数的时候用 IFNULL 也可以

MySQL5.7之后,sql_mode中ONLY_FULL_GROUP_BY模式默认设置为打开状态。
ONLY_FULL_GROUP_BY的语义就是确定select target list中的所有列的值都是明确语义,因此这里的coalesce是不好使的,可以通过any_value()函数来抑制ONLY_FULL_GROUP_BY值被拒绝,any_value()会选择被分到同一组的数据里第一条数据的指定列值作为返回数据

GROUP BY中使用WITH ROLLUP
WITH ROLLUP,使用 WITH ROLLUP 关键字之后,在所有查询出的分组记录之后增加一条记录,该记录计算查询出的所有记录的总和
注意:当使用ROLLUP时,不能同时使用ORDER BY子句进行结果排序,即ROLLUP和ORDER BY是互相排斥的。

SELECT
    any_value(coalesce(DATE_FORMAT(submit_time,"%Y%m"),'2021汇总')) as submit_month,
    count(submit_time) as month_q_cnt,
    # 因为汇总除的数也是31,因此这里取max聚合
    round(count(submit_time) / max(day(last_day(submit_time))),3) as avg_day_q_cnt
FROM practice_record
WHERE year(submit_time) = '2021'
GROUP BY date_format(submit_time,"%Y%m") with rollup;

SQL 128

使用 count() 函数实现条件统计的基础是:对于值为NULL的记录不计数,利用这个性质我们可以轻松统计出值不为 NULL 的记录,再统计总记录,即可得到值为 NULL 的记录。

# 统计num大于200的记录
select count(num > 200 or null) from a;
# or null 作用就是当条件不满足时,函数变成了count(null)不会统计数量
# 但是 num > 200 这个条件不成立时的 false 是会被统计到的

GROUP_CONCAT() 函数是mysql中非常实用的聚合函数,将给分组内的值连接为一个字符串。其完整语法:

GROUP_CONCAT([DISTINCT] 要连接的字段 [ORDER BY 排序字段 ASC/DESC] [SEPARATOR ‘分隔符’])
select uid,
    count(uid) - count(submit_time) as incomplete_cnt,
    count(submit_time) as complete_cnt,
    group_concat(distinct date_format(start_time, '%Y-%m-%d'), ':', tag
    Order BY start_time ASC #排序字段
    SEPARATOR ';') as detail
from exam_record as er
inner join examination_info as ei
on er.exam_id = ei.exam_id
where year(start_time) = '2021'  #过滤字段写到分组前
group by uid
having incomplete_cnt < 5 and incomplete_cnt > 1
and complete_cnt >= 1
order by incomplete_cnt desc;

多表查询

SQL 129

先考虑简单的,找出 “当月均完成试卷数”不小于3的用户们,然后按 tag 分组统计存在 start_time 的作答记录个数即可

select tag, count(start_time) as tag_cnt
from examination_info as ei
inner join exam_record as er
on ei.exam_id = er.exam_id
where uid in (
    select uid
    from exam_record as er
    inner join examination_info as ei
    on er.exam_id = ei.exam_id
    group by uid, date_format(start_time, '%Y%m')
    having count(date_format(submit_time, '%Y%m')) >= 3
)
group by tag
order by tag_cnt desc;

SQL 130

select ei.exam_id as exam_id,
    count(distinct uid) as uv,
    # round(avg(score) ,1) as avg_score
    round(sum(score) / count(score) , 1) as avg_score
from examination_info as ei
inner join exam_record as er
on ei.exam_id = er.exam_id
where date_format(start_time, '%Y%m%d') in ( # 时间
    select date_format(release_time, '%Y%m%d') # 先弄出SQL试卷的发出的时间字段
    from examination_info
    where tag = 'SQL'
)
and uid in ( # 用户
    select uid      # 再弄出等级大于5的用户的uid
    from user_info
    where level > 5
)
and tag = 'SQL'  # SQL试卷
group by ei.exam_id #所有的SQL试卷按exam_id分组
order by uv desc, avg_score;

SQL 131

select level, count(level) as level_cnt
from user_info as ui, (
    select uid
    from exam_record as er
    inner join examination_info as ei
    on er.exam_id = ei.exam_id
    where tag = 'SQL' && score > 80
) as tmp
where ui.uid = tmp.uid
group by level
order by level_cnt desc;

SQL 132

再套一个 select 来使得子查询的排序独立

select * from (
select exam_id as tid, 
    count(distinct uid) as uv,
    count(start_time) as pv 
from exam_record
group by exam_id
order by uv desc, pv desc
) as t1

union

select * from (
select question_id as tid,
    count(distinct uid) as uv,
    count(submit_time) as pv
from practice_record
group by question_id
order by uv desc, pv desc
) as t2

SQL 133

TIME_TO_SEC() 将时间差转换为秒

select uid, 'activity1' as activity
from exam_record
group by uid
having min(score) >= 85

union

select uid, 'activity2' as activity
from examination_info as ei
inner join exam_record as er
on er.exam_id = ei.exam_id
where score > 80
and difficulty = 'hard'
and TIME_TO_SEC(timediff(submit_time, start_time)) < duration * 30

order by uid;

其他操作

SQL 146(IFNULL)

select uid,
    floor(avg(any_value(ifnull(score, 0)))) as avg_score,
    round(avg(
        if(submit_time is not null, timestampdiff(minute, start_time, submit_time), duration)
        ), 1) as avg_time_took
from examination_info as ei
inner join exam_record as er
on ei.exam_id = er.exam_id
where difficulty = 'hard'
and uid in (
    select uid
    from user_info
    where level = 0
)
group by uid

SQL 147

select uid, nick_name, achievement
from user_info
where nick_name like '牛客%'
and nick_name like '%号'
and achievement between 1200 and 2500
and uid in (
    select uid
    from exam_record
    group by uid
    having max(date_format(start_time, '%Y%m')) = '202109'

    union 

    select uid
    from practice_record
    group by uid
    having max(date_format(submit_time, '%Y%m')) = '202109'
)
select uid, nick_name, achievement
from user_info
where nick_name like '牛客%'
and nick_name like '%号'
and achievement between 1200 and 2500
and (
    uid in(
        select uid
        from exam_record
        group by uid
        having max(date_format(start_time, '%Y%m')) = '202109'
    )
    or uid in(
        select uid
        from practice_record
        group by uid
        having max(date_format(submit_time, '%Y%m')) = '202109'
    )
)

SQL 148(正则表达式)

正则表达式匹配纯数字或者中间纯数字

select uid, er.exam_id,
    round(avg(score) ,0) as avg_score
from examination_info as ei
inner join exam_record as er
on ei.exam_id = er.exam_id
where uid in (
    select uid
    from user_info
    where nick_name regexp '^牛客[0-9]+号$'
    or nick_name regexp '^[0-9]+$'
)
and ei.exam_id in (
    select exam_id
    from examination_info
    where tag regexp '^[Cc]'
)
and score is not null
group by uid, exam_id
order by uid, avg_score

SQL 149(WITH AS)

比较复杂的一个题,需要用 WITH AS 存一下查询

with t as (
    select ui.uid as uid,
        count(start_time) - count(submit_time) as incomplete_cnt,
        round(if(count(start_time) - count(submit_time) > 0,
                (count(start_time) - count(submit_time)) / count(start_time),
                0
                )
            ,3) as incomplete_rate,
        level,
        count(start_time) as total_cnt # 作答个数
    from user_info as ui
    left join exam_record as er
    on ui.uid = er.uid
    group by uid
)

select uid, incomplete_cnt, incomplete_rate
from t
where exists(
    select uid from t where level = 0 and incomplete_cnt > 2
)
and level = 0
union
select uid, incomplete_cnt, incomplete_rate
from t
where not exists (
    select uid from t where level = 0 and incomplete_cnt > 2
)
and total_cnt > 0 # 有作答记录的用户
order by incomplete_rate

SQL150(CASE WHEN THEN)

很烂但有用的代码

select ui.level,
    case 
        when score >= 90 then '优'
        when score >= 75 then '良'
        when score >= 60 then '中'
        when score >= 0 then '差' end as score_grade,
    round(count( 
        case 
        when score >= 90 then '优'
        when score >= 75 then '良'
        when score >= 60 then '中'
        when score >= 0 then '差' end) / num
        , 3) as ratio
from exam_record as er, user_info as ui, (
    select level, count(level) as num
    from exam_record as er
    inner join user_info as ui
    on er.uid = ui.uid
    where score is not null
    group by level
    order by level desc
) as tmp
where er.uid = ui.uid
and tmp.level = ui.level
and score is not null
group by level, score_grade
order by level desc, ratio desc

SQL 152

select er.uid, level, register_time, score as max_score
from exam_record as er
inner join user_info as ui
on er.uid = ui.uid
where exam_id in ( # 把exam_record筛的只剩下job为算法的人做的算法试卷记录
    select exam_id
    from examination_info
    where tag = '算法'
)
and er.uid in (
    select uid
    from user_info
    where job = '算法'
)
and score is not null # 还得做完
order by score desc
limit 6, 3;

SQL 153(substring_index)

substring_index(str,delim,count),str:要处理的字符串,delm:分隔符

SELECT exam_id,
    substring_index(tag, ',', 1) AS tag,
    substring_index(substring_index(tag, ',', 2), ',', -1) AS difficulty,
    substring_index(tag, ',', -1) AS duration
FROM examination_info
WHERE tag LIKE '%,%';

SQL 154(IF)

简单的 IF 应用

select uid, (
    if(char_length(nick_name) > 13, 
    concat(substring(nick_name, 1, 10), '...'),
    nick_name
    )
) as nick_name
from user_info
where char_length(nick_name) > 10;

SQL 155

这个题写的我脑子有点乱

select t1.tag, t2.total_num
from (
    select tag, num # 查询试卷作答数小于3的exam_id对应的tag和个数
    from examination_info as ei, ( 
        select exam_id, count(exam_id) as num #按exam_id分组,并统计个数
        from exam_record
        group by exam_id
    ) as tmp
    where ei.exam_id = tmp.exam_id # 多表查询
    and num < 3
) as t1, (
    select tag, sum(num) as total_num #按tag分类,把大写的tag聚合起来统计个数
    from examination_info as ei, (
        select exam_id, count(exam_id) as num
        from exam_record
        group by exam_id
    ) as tmp
    where ei.exam_id = tmp.exam_id
    group by tag 
) as t2
where upper(t1.tag) = t2.tag  # 小写的t1.tag匹配大写的t2.tag
and t1.tag != t2.tag

http://www.kler.cn/a/161309.html

相关文章:

  • Intent--组件通信
  • WhisperKit: Android 端测试 Whisper -- Android手机(Qualcomm GPU)部署音频大模型
  • 基于earthSDK三维地图组件开发
  • 关于科研中使用linux服务器的集锦
  • 圣诞节文化交流会在洛杉矶成功举办
  • 网络安全攻防演练中的常见计策
  • 基于JNI实现调用C++ SDK
  • 深圳锐杰金融:用金融力量守护社区健康
  • workbench导入sql脚本文件
  • (C#)使用sharpcompress压缩解压文件(.rar,.zip,tar.bz2,.7z,.tar.gz)
  • Docker、Kubernetes、OCI、CRI-O、containerd、runc 之间的关系以及它们是如何一起工作的?
  • 5.9 Windows驱动开发:内核InlineHook挂钩技术
  • 移除静态库中多余的符号
  • Docker使用笔记
  • 详细解读python里的列表
  • 排序:直接选择排序
  • Elasticsearch:评估 RAG - 指标之旅
  • WebGL笔记:矩阵缩放的数学原理和实现
  • 【Flink on k8s】- 0 - Flink kubernetes operator 快速入门与实战
  • 【SQL开发实战技巧】系列(四十八):Oracle12C常用新特性☞多分区操作和管理
  • dtaidistance笔记:dtw_ndim (高维时间序列之间的DTW)
  • 嵌入式工程师校招经验与学习路线总结
  • 使用群晖Docker搭建HomeAssistant并实现异地公网访问家中智能设备
  • ES6与ES5的区别?
  • 排序:快速排序(hoare版本)
  • 分布式搜索引擎03