当前位置: 首页 > article >正文

STM32存储左右互搏 SPI总线读写FRAM MB85RS16

STM32存储左右互搏 I2C总线读写FRAM MB85RS16

在中低容量存储领域,除了FLASH的使用,,还有铁电存储器FRAM的使用,相对于FLASH,FRAM写操作时不需要预擦除,所以执行写操作时可以达到更高的速度,其主要优点为没有FLASH持续写操作跨页地址需要变换的要求。相比于SRAM则具有非易失性, 因此价格方面会高一些。MB85RS16是2K Byte(16K bit)的FRAM,能够按字节进行写入且没有写入等待时间。其管脚功能兼容FLASH:
在这里插入图片描述
SPI总线访问的FRAM更大容量的型号还有MB85RS128, MB85RS256, MB85RS512, MB85RS1M, MB85RS2M等。这里介绍STM32访问FRAM MB85RS16的例程。采用STM32CUBEIDE开发平台,以STM32F401CCU6芯片为例,通过STM32 SPI硬件电路实现读写操作,通过USB虚拟串口进行控制。

STM32工程配置

首先建立基本工程并设置时钟:
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
配置硬件SPI接口:
在这里插入图片描述
在这里插入图片描述
增加配置PA4作为SPI软件代码控制输出的片选管脚
并增加PA2和PA3连接到/WP和/HOLD管脚,并保持输出高电平
在这里插入图片描述
在这里插入图片描述
配置USB作为通讯口:
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
保存并生成初始工程代码:
在这里插入图片描述

STM32工程代码

USB虚拟串口的使用参考:STM32 USB VCOM和HID的区别,配置及Echo功能实现(HAL)
代码里用到的微秒延时函数参考: STM32 HAL us delay(微秒延时)的指令延时实现方式及优化

这里的测试逻辑实现为:当USB虚拟串口收到任何数据时,STM32在内部对MB85RS16写入从USB虚拟串口收到的数据,然后再回读出来,通过USB虚拟串口发送出去。

USB接收数据的代码:
在这里插入图片描述

static int8_t CDC_Receive_FS(uint8_t* Buf, uint32_t *Len)
{
  /* USER CODE BEGIN 6 */
	extern uint8_t cmd;
	extern uint8_t * RData;
	extern uint32_t RDataLen;

	RData = Buf;
	RDataLen = *Len;
	cmd = 1;

  USBD_CDC_SetRxBuffer(&hUsbDeviceFS, &Buf[0]);
  USBD_CDC_ReceivePacket(&hUsbDeviceFS);
  return (USBD_OK);
  /* USER CODE END 6 */
}

新建MB85RS16访问函数头文件MB85RS16.h

#ifndef INC_MB85RS16_H_
#define INC_MB85RS16_H_
#include "main.h"

/*To define operation code*/
#define WREN 0x06    //Set Write Enable Latch
#define WRDI 0x04    //Reset Write Enable Latch
#define RDSR 0x05    //Read Status Register
#define WRSR 0x01    //Write Status Register
#define READ 0x03    //Read Memory Code
#define WRITE 0x02   //Write Memory Code
#define RDID 0x9F    //Read Device ID

#define MB85RS16_ID 0x01017F04

uint32_t MB85RS16_ReadID(void);
uint8_t MB85RS16_Init(void);
void MB85RS16_Set_Write_Enable_Latch(void);
void MB85RS16_Reset_Write_Enable_Latch(void);
void MB85RS16_Write_Status_Register(uint8_t SRV);
uint8_t MB85RS16_Read_Status_Register(void);
void MB85RS16_Write_Memory(uint8_t * wd, uint16_t addr, uint32_t len);
void MB85RS16_Read_Memory(uint8_t * rd, uint16_t addr, uint32_t len);

#endif /* INC_MB85RS16_H_ */

新建MB85RS16访问函数源文件MB85RS16.c

//Written by Pegasus Yu in 2023

#include "MB85RS16.h"
#include <string.h>

#define SPI1_CS_L HAL_GPIO_WritePin(GPIOA, GPIO_PIN_4, GPIO_PIN_RESET)
#define SPI1_CS_H HAL_GPIO_WritePin(GPIOA, GPIO_PIN_4, GPIO_PIN_SET)
extern SPI_HandleTypeDef hspi1;
extern void PY_Delay_us_t(uint32_t Delay);


uint32_t MB85RS16_ReadID(void)
{
	uint8_t ftd[5];
	uint8_t frd[5];
	uint8_t Manufacturer_ID;
	uint8_t Continuation_Code;
	uint8_t Product_ID_L;
	uint8_t Product_ID_H;

	ftd[0]=RDID;


	SPI1_CS_L;

	HAL_SPI_TransmitReceive(&hspi1, ftd, frd, 5, 0xFFFFFFFF);

	SPI1_CS_H;

	Manufacturer_ID = frd[1];
	Continuation_Code = frd[2];
	Product_ID_L = frd[3];
	Product_ID_H = frd[4];

	return ((Product_ID_H<<24)|(Product_ID_L<<16)|(Continuation_Code<<8)|(Manufacturer_ID));
}

uint8_t MB85RS16_Init(void)
{
	uint8_t st = 0;

	for(uint8_t i=0; i<4; i++)
	{
		if(MB85RS16_ReadID()==MB85RS16_ID)
		{
			st = 1;
			break;
		}

	}

	return st;

}


/*
 * WEL is reset after the following operations which means every write operation must follow once WREN operation MB85RS16_Set_Write_Enable_Latch().
 * After power ON.
 * After WRDI command recognition.
 * At the rising edge of CS after WRSR command recognition.
 * At the rising edge of CS after WRITE command recognition.
 */
void MB85RS16_Set_Write_Enable_Latch(void)
{
    uint8_t cmd = WREN;
	SPI1_CS_L;

	HAL_SPI_Transmit(&hspi1, &cmd, 1, 0xFFFFFFFF);

	SPI1_CS_H;
}


void MB85RS16_Reset_Write_Enable_Latch(void)
{
    uint8_t cmd = WRDI;
	SPI1_CS_L;

	HAL_SPI_Transmit(&hspi1, &cmd, 1, 0xFFFFFFFF);

	SPI1_CS_H;
}


void MB85RS16_Write_Status_Register(uint8_t SRV)
{
    uint8_t data[2];
    data[0] = WRSR;
    data[1] = SRV;

    MB85RS16_Set_Write_Enable_Latch();

    PY_Delay_us_t(2);

	SPI1_CS_L;

	HAL_SPI_Transmit(&hspi1, data, 2, 0xFFFFFFFF);

	SPI1_CS_H;
}

uint8_t MB85RS16_Read_Status_Register(void)
{
    uint8_t cmd[2];
    uint8_t data[2];
    uint8_t SRV;

    cmd[0] = RDSR;

	SPI1_CS_L;

	HAL_SPI_TransmitReceive(&hspi1, cmd, data, 2, 0xFFFFFFFF);

	SPI1_CS_H;

	SRV = data[1];
	return SRV;

}

/*
 * wd: data buffer pointer
 * addr: address to operate for MB85RS16
 * len: data length to be written
 */

void MB85RS16_Write_Memory(uint8_t * wd, uint16_t addr, uint32_t len)
{
    uint8_t data[len+3];
    data[0] = WRITE;
    data[1] = (uint8_t)(addr>>8);
    data[2] = (uint8_t)addr;

    memcpy(data+3, wd, len);

    MB85RS16_Set_Write_Enable_Latch();

    PY_Delay_us_t(2);

	SPI1_CS_L;

	HAL_SPI_Transmit(&hspi1, data, len+3, 0xFFFFFFFF);

	SPI1_CS_H;
}


/*
 * rd: data buffer pointer
 * addr: address to operate for MB85RS16
 * len: data length to be written
 */

void MB85RS16_Read_Memory(uint8_t * rd, uint16_t addr, uint32_t len)
{
    uint8_t cmd[len+3];
    uint8_t data[len+3];
    cmd[0] = READ;
    cmd[1] = (uint8_t)(addr>>8);
    cmd[2] = (uint8_t)addr;

	SPI1_CS_L;

	HAL_SPI_TransmitReceive(&hspi1, cmd, data , len+3, 0xFFFFFFFF);

	SPI1_CS_H;

	memcpy(rd, data+3, len);
}






完整的main.c主文件代码如下:

/* USER CODE BEGIN Header */
/**
  ******************************************************************************
  * @file           : main.c
  * @brief          : Main program body
  ******************************************************************************
  * @attention
  *
  * Copyright (c) 2023 STMicroelectronics.
  * All rights reserved.
  *
  * This software is licensed under terms that can be found in the LICENSE file
  * in the root directory of this software component.
  * If no LICENSE file comes with this software, it is provided AS-IS.
  *
  ******************************************************************************
  */
//Written by Pegasus Yu in 2023
/* USER CODE END Header */
/* Includes ------------------------------------------------------------------*/
#include "main.h"
#include "usb_device.h"

/* Private includes ----------------------------------------------------------*/
/* USER CODE BEGIN Includes */
#include <string.h>
#include "MB85RS16.h"
/* USER CODE END Includes */

/* Private typedef -----------------------------------------------------------*/
/* USER CODE BEGIN PTD */
uint8_t CDC_Transmit_FS(uint8_t* Buf, uint16_t Len);
/* USER CODE END PTD */

/* Private define ------------------------------------------------------------*/
/* USER CODE BEGIN PD */
__IO float usDelayBase;
void PY_usDelayTest(void)
{
  __IO uint32_t firstms, secondms;
  __IO uint32_t counter = 0;

  firstms = HAL_GetTick()+1;
  secondms = firstms+1;

  while(uwTick!=firstms) ;

  while(uwTick!=secondms) counter++;

  usDelayBase = ((float)counter)/1000;
}

void PY_Delay_us_t(uint32_t Delay)
{
  __IO uint32_t delayReg;
  __IO uint32_t usNum = (uint32_t)(Delay*usDelayBase);

  delayReg = 0;
  while(delayReg!=usNum) delayReg++;
}

void PY_usDelayOptimize(void)
{
  __IO uint32_t firstms, secondms;
  __IO float coe = 1.0;

  firstms = HAL_GetTick();
  PY_Delay_us_t(1000000) ;
  secondms = HAL_GetTick();

  coe = ((float)1000)/(secondms-firstms);
  usDelayBase = coe*usDelayBase;
}

void PY_Delay_us(uint32_t Delay)
{
  __IO uint32_t delayReg;

  __IO uint32_t msNum = Delay/1000;
  __IO uint32_t usNum = (uint32_t)((Delay%1000)*usDelayBase);

  if(msNum>0) HAL_Delay(msNum);

  delayReg = 0;
  while(delayReg!=usNum) delayReg++;
}
/* USER CODE END PD */

/* Private macro -------------------------------------------------------------*/
/* USER CODE BEGIN PM */

/* USER CODE END PM */

/* Private variables ---------------------------------------------------------*/
SPI_HandleTypeDef hspi1;

/* USER CODE BEGIN PV */

/* USER CODE END PV */

/* Private function prototypes -----------------------------------------------*/
void SystemClock_Config(void);
static void MX_GPIO_Init(void);
static void MX_SPI1_Init(void);
/* USER CODE BEGIN PFP */

/* USER CODE END PFP */

/* Private user code ---------------------------------------------------------*/
/* USER CODE BEGIN 0 */
uint8_t cmd=0;          //for status control
uint8_t * RData;        //USB rx data pointer
uint32_t RDataLen;      //USB rx data length
uint8_t * TData;        //USB tx data pointer
uint32_t TDataLen;      //USB tx data length


uint8_t MB85RS16_Status = 0;
uint16_t MB85RS16_OPADDR = 0;
/* USER CODE END 0 */

/**
  * @brief  The application entry point.
  * @retval int
  */
int main(void)
{
  /* USER CODE BEGIN 1 */

  /* USER CODE END 1 */

  /* MCU Configuration--------------------------------------------------------*/

  /* Reset of all peripherals, Initializes the Flash interface and the Systick. */
  HAL_Init();

  /* USER CODE BEGIN Init */

  /* USER CODE END Init */

  /* Configure the system clock */
  SystemClock_Config();

  /* USER CODE BEGIN SysInit */

  /* USER CODE END SysInit */

  /* Initialize all configured peripherals */
  MX_GPIO_Init();
  MX_USB_DEVICE_Init();
  MX_SPI1_Init();
  /* USER CODE BEGIN 2 */
  PY_usDelayTest();
  PY_usDelayOptimize();

  MB85RS16_Status = MB85RS16_Init();
  /* USER CODE END 2 */

  /* Infinite loop */
  /* USER CODE BEGIN WHILE */
  while (1)
  {
	if(cmd==1)
	{
		cmd = 0;

		if(MB85RS16_Status==1)
		{
			MB85RS16_OPADDR = 0; //Set operation address here

			MB85RS16_Write_Memory(RData, MB85RS16_OPADDR, RDataLen);

	        PY_Delay_us_t(2);

			uint8_t rd[RDataLen];
			MB85RS16_Read_Memory(rd, MB85RS16_OPADDR, RDataLen);

			TData = rd;
			TDataLen = RDataLen;
			CDC_Transmit_FS(TData, TDataLen);

		}
		else
		{
			CDC_Transmit_FS("MB85RS16 ID read failure!\r\n", strlen("MB85RS16 ID read failure!\r\n"));
		}

	}

    /* USER CODE END WHILE */

    /* USER CODE BEGIN 3 */
  }
  /* USER CODE END 3 */
}

/**
  * @brief System Clock Configuration
  * @retval None
  */
void SystemClock_Config(void)
{
  RCC_OscInitTypeDef RCC_OscInitStruct = {0};
  RCC_ClkInitTypeDef RCC_ClkInitStruct = {0};

  /** Configure the main internal regulator output voltage
  */
  __HAL_RCC_PWR_CLK_ENABLE();
  __HAL_PWR_VOLTAGESCALING_CONFIG(PWR_REGULATOR_VOLTAGE_SCALE2);

  /** Initializes the RCC Oscillators according to the specified parameters
  * in the RCC_OscInitTypeDef structure.
  */
  RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_HSE;
  RCC_OscInitStruct.HSEState = RCC_HSE_ON;
  RCC_OscInitStruct.PLL.PLLState = RCC_PLL_ON;
  RCC_OscInitStruct.PLL.PLLSource = RCC_PLLSOURCE_HSE;
  RCC_OscInitStruct.PLL.PLLM = 25;
  RCC_OscInitStruct.PLL.PLLN = 336;
  RCC_OscInitStruct.PLL.PLLP = RCC_PLLP_DIV4;
  RCC_OscInitStruct.PLL.PLLQ = 7;
  if (HAL_RCC_OscConfig(&RCC_OscInitStruct) != HAL_OK)
  {
    Error_Handler();
  }

  /** Initializes the CPU, AHB and APB buses clocks
  */
  RCC_ClkInitStruct.ClockType = RCC_CLOCKTYPE_HCLK|RCC_CLOCKTYPE_SYSCLK
                              |RCC_CLOCKTYPE_PCLK1|RCC_CLOCKTYPE_PCLK2;
  RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_PLLCLK;
  RCC_ClkInitStruct.AHBCLKDivider = RCC_SYSCLK_DIV1;
  RCC_ClkInitStruct.APB1CLKDivider = RCC_HCLK_DIV2;
  RCC_ClkInitStruct.APB2CLKDivider = RCC_HCLK_DIV1;

  if (HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_2) != HAL_OK)
  {
    Error_Handler();
  }
}

/**
  * @brief SPI1 Initialization Function
  * @param None
  * @retval None
  */
static void MX_SPI1_Init(void)
{

  /* USER CODE BEGIN SPI1_Init 0 */

  /* USER CODE END SPI1_Init 0 */

  /* USER CODE BEGIN SPI1_Init 1 */

  /* USER CODE END SPI1_Init 1 */
  /* SPI1 parameter configuration*/
  hspi1.Instance = SPI1;
  hspi1.Init.Mode = SPI_MODE_MASTER;
  hspi1.Init.Direction = SPI_DIRECTION_2LINES;
  hspi1.Init.DataSize = SPI_DATASIZE_8BIT;
  hspi1.Init.CLKPolarity = SPI_POLARITY_LOW;
  hspi1.Init.CLKPhase = SPI_PHASE_1EDGE;
  hspi1.Init.NSS = SPI_NSS_SOFT;
  hspi1.Init.BaudRatePrescaler = SPI_BAUDRATEPRESCALER_8;
  hspi1.Init.FirstBit = SPI_FIRSTBIT_MSB;
  hspi1.Init.TIMode = SPI_TIMODE_DISABLE;
  hspi1.Init.CRCCalculation = SPI_CRCCALCULATION_DISABLE;
  hspi1.Init.CRCPolynomial = 10;
  if (HAL_SPI_Init(&hspi1) != HAL_OK)
  {
    Error_Handler();
  }
  /* USER CODE BEGIN SPI1_Init 2 */

  /* USER CODE END SPI1_Init 2 */

}

/**
  * @brief GPIO Initialization Function
  * @param None
  * @retval None
  */
static void MX_GPIO_Init(void)
{
  GPIO_InitTypeDef GPIO_InitStruct = {0};

  /* GPIO Ports Clock Enable */
  __HAL_RCC_GPIOH_CLK_ENABLE();
  __HAL_RCC_GPIOA_CLK_ENABLE();

  /*Configure GPIO pin Output Level */
  HAL_GPIO_WritePin(GPIOA, GPIO_PIN_2|GPIO_PIN_3|GPIO_PIN_4, GPIO_PIN_SET);

  /*Configure GPIO pins : PA2 PA3 PA4 */
  GPIO_InitStruct.Pin = GPIO_PIN_2|GPIO_PIN_3|GPIO_PIN_4;
  GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP;
  GPIO_InitStruct.Pull = GPIO_NOPULL;
  GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_VERY_HIGH;
  HAL_GPIO_Init(GPIOA, &GPIO_InitStruct);

}

/* USER CODE BEGIN 4 */

/* USER CODE END 4 */

/**
  * @brief  This function is executed in case of error occurrence.
  * @retval None
  */
void Error_Handler(void)
{
  /* USER CODE BEGIN Error_Handler_Debug */
  /* User can add his own implementation to report the HAL error return state */
  __disable_irq();
  while (1)
  {
  }
  /* USER CODE END Error_Handler_Debug */
}

#ifdef  USE_FULL_ASSERT
/**
  * @brief  Reports the name of the source file and the source line number
  *         where the assert_param error has occurred.
  * @param  file: pointer to the source file name
  * @param  line: assert_param error line source number
  * @retval None
  */
void assert_failed(uint8_t *file, uint32_t line)
{
  /* USER CODE BEGIN 6 */
  /* User can add his own implementation to report the file name and line number,
     ex: printf("Wrong parameters value: file %s on line %d\r\n", file, line) */
  /* USER CODE END 6 */
}
#endif /* USE_FULL_ASSERT */

STM32范例测试

上述范例的测试效果如下:
在这里插入图片描述

STM32例程下载

STM32F401CCU6 SPI总线读写FRAM MB85RS16例程

–End–


http://www.kler.cn/a/162073.html

相关文章:

  • 【学习笔记】数据结构(七)
  • Linux第四讲:Git gdb
  • 学Linux的第八天
  • 想租用显卡训练自己的网络?AutoDL保姆级使用教程(PyCharm版)
  • 如何提高自动驾驶中惯性和卫星组合导航pbox的精度?
  • 平替 Spring 正当时!Solon v3.0.3 发布
  • Spring 依赖注入的三种方式优缺点
  • 【UE5】瞬移+马赛克过渡效果
  • mixamo根动画导入UE5问题:滑铲
  • NGINX相关配置
  • Apache solr XXE 漏洞(CVE-2017-12629)
  • webrtc 设置不获取鼠标 启用回声消除
  • Java 简易版 TCP(一对一)聊天
  • python pyaudio显示音频波形图
  • FPGA模块——SPI协议(读写FLASH)
  • UDP协议实现群聊
  • 云架构的思考3--云上开发
  • AI自动生成代码工具
  • HTTP 缓存机制
  • Leetcode刷题笔记——摩尔投票法
  • 【无线网络技术】——无线个域网(学习笔记)
  • 『亚马逊云科技产品测评』活动征文|基于亚马逊云EC2搭建PG开源数据库
  • Linux指令学习
  • 第二十一章总结
  • centOS使用docker部署ElasticSearch和Kibana
  • 深入浅出理解kafka ---- 万字总结