当前位置: 首页 > article >正文

pytorch 模型量化quantization

pytorch 模型量化quantization

  • 1.workflow
    • 1.1 PTQ
    • 1.2 QAT
  • 2. demo
    • 2.1 构建resnet101_quantization模型
    • 2.2 PTQ
    • 2.3 QAT
  • 参考文献

pytorch框架提供了三种量化方法,包括:

  • Dynamic Quantization
  • Post-Training Static Quantization(PTQ)
  • Quantization Aware Training(QAT)

此博客结合CIFAR100数据集分类任务,分别采用Post-Training Static QuantizationQuantization Aware Training对resnet101模型进行量化。

1.workflow

1.1 PTQ

在这里插入图片描述

图片来自Practical Quantization in PyTorch。

1.2 QAT

在这里插入图片描述

图片来自Practical Quantization in PyTorch。

从两张图片来看,PTQ和QAT的差别在于:PTQ量化前使用了calibration data,而QAT则有一个和训练阶段类似的训练过程。

2. demo

2.1 构建resnet101_quantization模型

import torch
import torch.nn as nn
from torch.ao.quantization import QuantStub, DeQuantStub

class ConvBNReLU(nn.Sequential):
    def __init__(self, in_planes, out_planes, kernel_size=3, stride=1, groups=1):
        padding = (kernel_size - 1) // 2
        super(ConvBNReLU, self).__init__(
            nn.Conv2d(in_planes, out_planes, kernel_size, stride,
                      padding, groups=groups, bias=False),
            nn.BatchNorm2d(out_planes, momentum=0.1),
            nn.ReLU(inplace=False)
        )


class ConvBN(nn.Sequential):
    def __init__(self, in_planes, out_planes, kernel_size=3, stride=1, groups=1):
        padding = (kernel_size - 1) // 2
        super(ConvBN, self).__init__(
            nn.Conv2d(in_planes, out_planes, kernel_size, stride,
                      padding, groups=groups, bias=False),
            nn.BatchNorm2d(out_planes, momentum=0.1),
        )


class BottleNeck(nn.Module):
    expansion = 4

    def __init__(self, in_channels, out_channels, stride=1):
        super().__init__()
        self.residual_function = nn.Sequential(
            ConvBNReLU(in_channels, out_channels, kernel_size=1),
            ConvBNReLU(out_channels, out_channels, kernel_size=3),
            ConvBN(out_channels, out_channels *
                   BottleNeck.expansion, kernel_size=1)
        )

        self.shortcut = nn.Sequential()

        if stride != 1 or in_channels != out_channels * BottleNeck.expansion:
            self.shortcut = ConvBN(in_channels, out_channels *
                                   BottleNeck.expansion, kernel_size=1)

        self.skip_add = nn.quantized.FloatFunctional()

    def forward(self, x):
        return nn.ReLU(inplace=True)(self.skip_add.add(self.residual_function(x), self.shortcut(x)))


class ResNet(nn.Module):

    def __init__(self, block, num_block, num_classes=100):
        super().__init__()

        self.in_channels = 64

        self.conv1 = nn.Sequential(
            ConvBNReLU(3, 64, kernel_size=3))

        self.conv2_x = self._make_layer(block, 64, num_block[0], 1)
        self.conv3_x = self._make_layer(block, 128, num_block[1], 2)
        self.conv4_x = self._make_layer(block, 256, num_block[2], 2)
        self.conv5_x = self._make_layer(block, 512, num_block[3], 2)
        self.avg_pool = nn.AdaptiveAvgPool2d((1, 1))

        self.fc = nn.Linear(512 * block.expansion, num_classes)

        self.quant = QuantStub()
        self.dequant = DeQuantStub()

    def _make_layer(self, block, out_channels, num_blocks, stride):

        strides = [stride] + [1] * (num_blocks - 1)
        layers = []
        for stride in strides:
            layers.append(block(self.in_channels, out_channels, stride))
            self.in_channels = out_channels * block.expansion

        return nn.Sequential(*layers)

    def forward(self, x):
        x = self.quant(x)
        output = self.conv1(x)
        output = self.conv2_x(output)
        output = self.conv3_x(output)
        output = self.conv4_x(output)
        output = self.conv5_x(output)
        output = self.avg_pool(output)
        output = output.view(output.size(0), -1)
        output = self.fc(output)
        x = self.dequant(x)
        return output
    # Fuse Conv+BN and Conv+BN+Relu modules prior to quantization
    # This operation does not change the numerics

    def fuse_model(self, is_qat=False):
        fuse_modules = torch.ao.quantization.fuse_modules_qat if is_qat else torch.ao.quantization.fuse_modules
        for m in self.modules():
            if type(m) == ConvBNReLU:
                fuse_modules(m, ['0', '1', '2'], inplace=True)

            if type(m) == ConvBN:
                fuse_modules(m, ['0', '1'], inplace=True)
def resnet101():
    """ return a ResNet 101 object
    """
    return ResNet(BottleNeck, [3, 4, 23, 3])

代码改编自https://github.com/weiaicunzai/pytorch-cifar100。

如果要使用quantization,构建的模型和常规模型差别主要在以下内容:


class BottleNeck(nn.Module):
    expansion = 4

    def __init__(self, in_channels, out_channels, stride=1):
        super().__init__()
        ...
        ...
        self.skip_add = nn.quantized.FloatFunctional()

    def forward(self, x):
        return nn.ReLU(inplace=True)(self.skip_add.add(self.residual_function(x), self.shortcut(x)))

这是因为没有直接用于相加的算子。

如果没有这一操作,可能会报如下错误:

NotImplementedError: Could not run 'aten::add.out' with arguments from the 'QuantizedCPU' backend. This could be because the operator doesn't exist for this backend, or was omitted during the selective/custom build process (if using custom build). 

另外就是:


class ResNet(nn.Module):
    def __init__(self, block, num_block, num_classes=100):
        super().__init__()
        ...
        ...
        self.quant = QuantStub() #observer
        self.dequant = DeQuantStub()

    def _make_layer(self, block, out_channels, num_blocks, stride):
        ...
        ...

    def forward(self, x):
        x = self.quant(x)
        ...
        ...
        x = self.dequant(x)
        return output
    # Fuse Conv+BN and Conv+BN+Relu modules prior to quantization
    # This operation does not change the numerics

    def fuse_model(self, is_qat=False):
        ...
        ...

即添加observer,以及将Conv+BN 和Conv+BN+Relu 模块融合到一起。

2.2 PTQ

def print_size_of_model(model):
    torch.save(model.state_dict(), "temp.p")
    print('Size (MB):', os.path.getsize("temp.p")/1e6)
    os.remove('temp.p')

qmodel = resnet101()
# qmodel.load_state_dict(torch.load(args.weights))

qmodel = qmodel.to(device)
# # print(qmodel)
qmodel.eval()

print("Size of model befor quantization")
print_size_of_model(qmodel)

num_calibration_batches = 32
qmodel.eval()
# Fuse Conv, bn and relu
qmodel.fuse_model()

# Specify quantization configuration
# Start with simple min/max range estimation and per-tensor quantization of weights
qmodel.qconfig = torch.ao.quantization.default_qconfig
print(qmodel.qconfig)
torch.ao.quantization.prepare(qmodel, inplace=True)

# Calibrate first
print('Post Training Quantization Prepare: Inserting Observers')


# Calibrate with the training set
criterion = nn.CrossEntropyLoss()
evaluate(qmodel, criterion, cifar100_test_loader,
             neval_batches=10)
print('Post Training Quantization: Calibration done')

# Convert to quantized model
torch.ao.quantization.convert(qmodel, inplace=True)
print('Post Training Quantization: Convert done')
# print('\n Inverted Residual Block: After fusion and quantization, note fused modules: \n\n',
#       qmodel.features[1].conv)

print("Size of model after quantization")
print_size_of_model(qmodel)
Size of model befor quantization
Size (MB): 171.40158

Size of model after quantization
Size (MB): 42.970334

size大致缩小了四倍。

经过测试,在本地cpu上推断时间也缩小了3~4倍。

2.3 QAT

#%% QAT
float_model_file="resnet101.pt"
qat_model=resnet101()
qat_model.load_state_dict(torch.load(float_model_file))
qat_model.fuse_model(is_qat=True)

optimizer = torch.optim.SGD(qat_model.parameters(), lr = 0.0001)
# The old 'fbgemm' is still available but 'x86' is the recommended default.
qat_model.qconfig = torch.ao.quantization.get_default_qat_qconfig('x86')
torch.ao.quantization.prepare_qat(qat_model, inplace=True)
# print('Inverted Residual Block: After preparation for QAT, note fake-quantization modules \n',qat_model.features[1].conv)

num_train_batches,num_eval_batches = 2,2
eval_batch_size=32
criterion = nn.CrossEntropyLoss()
nepochs=10

# QAT takes time and one needs to train over a few epochs.
# Train and check accuracy after each epoch
for nepoch in range(nepochs):
    train_one_epoch(qat_model, criterion, optimizer, cifar100_test_loader, torch.device('cpu'),  num_train_batches)
    if nepoch > 3:
        # Freeze quantizer parameters
        qat_model.apply(torch.ao.quantization.disable_observer)
    if nepoch > 2:
        # Freeze batch norm mean and variance estimates
        qat_model.apply(torch.nn.intrinsic.qat.freeze_bn_stats)

    # Check the accuracy after each epoch
    quantized_model = torch.ao.quantization.convert(qat_model.eval(), inplace=False)
    quantized_model.eval()
    top1, top5 = evaluate(quantized_model,criterion, cifar100_test_loader, neval_batches=2)
    print('Epoch %d :Evaluation accuracy on %d images, %2.2f'%(nepoch, num_eval_batches * eval_batch_size, top1.avg))

完整代码后续将分享在github或csdn资源中。

参考文献

[1] Introduction to Quantization on PyTorch
[2] https://github.com/pytorch/pytorch/wiki/Introducing-Quantized-Tensor
[3] tensorflow 训练后量化
[4] pytorch dynamic and static quantization 适用的算子
[5] ★★★pytorch_static quantization tutorial
[6] PyTorch Static Quantization
[7] Practical Quantization in PyTorch
[8] ★★★https://github.com/weiaicunzai/pytorch-cifar100


http://www.kler.cn/news/162128.html

相关文章:

  • JAVA后端自学技能实操合集
  • Qt之基于QCustomPlot绘制直方图(Histogram),叠加正态分布曲线
  • vmware安装centos7总结
  • VSCODE 运行C程序缓慢解决方法之一
  • Ubuntu22.04安装Mariadb
  • C语言printf的输出格式大全及颜色字体打印
  • 微信小程序中block和View组件的使用区别
  • AI发展下服务器的选择非常重要
  • mysql 链接超时的几个参数详解
  • 嵌入式总线技术学习(文章链接汇总)
  • C语言——指针(五)
  • 【C/PTA —— 15.结构体2(课内实践)】
  • 3D材质编辑:制作被火烧的木头
  • ERP数据仓库模型
  • 数学建模-二氧化碳排放及时空分布测度
  • Ubuntu安装nvidia GPU显卡驱动教程
  • SAP数据一键拉取!利用零代码ETL工具快速实现数据同步
  • 【C/PTA —— 15.结构体2(课外实践)】
  • CPU密集型和IO密集型与CPU内核之间的关系
  • Fabric 画布缩放、拖动、初始化大小
  • 人工智能_机器学习059_非线性核函数_poly核函数_rbf核函数_以及linear核函数效果对比---人工智能工作笔记0099
  • Docker快速入门(编译源码辅助技)
  • AWS攻略——使用中转网关(Transit Gateway)连接同区域(Region)VPC
  • Android 默认打开应用的权限
  • bat脚本之加法
  • Linux_vi/vim编辑器
  • Qt基础之四十:Qt Installer Framework(QtIFW)的编译、使用和实现原理
  • 【Python系列】Python函数
  • 经验分享|MySQL分区实战(RANGE)
  • 系列学习前端之第 4 章:一文精通 JavaScript