当前位置: 首页 > article >正文

YOLOv8分割训练及分割半自动标注

YOLOv8是基于目标检测算法YOLOv5的改进版,它在YOLOv5的基础上进行了优化和改进,加入了一些新的特性和技术,如切片注意力机制、骨干网络的选择等。
本文以yolov8-seg为基准,主要整理分割训练流程及使用v8分割模型进行半自动标注的过程。
一、v8-seg训练
1.1 环境配置
github下载项目:https://github.com/ultralytics/ultralytics
anaconda新建虚拟环境(python3.8及以上)后,进入项目根目录,
执行pip install -r requirements.txt,另外需要安装cuda版的torch和torchvision,本人安装版本:torch-1.8.1+cu101, torchvision-0.9.1+cu101
1.2 数据集准备
labelme标注的json数据,需要转换为yolo的txt格式,以及划分训练、验证、测试数据集
1.2.1 分割数据的json转txt
json2txt.py如下所示:

# -*- coding: utf-8 -*-
import json
import os
import argparse
from tqdm 

http://www.kler.cn/a/163125.html

相关文章:

  • Microsoft 365 Exchange如何设置可信发件IP白名单
  • 前端开发中常用的包管理器(npm、yarn、pnpm、bower、parcel)
  • 并发基础:(淘宝笔试题)三个线程分别打印 A,B,C,要求这三个线程一起运行,打印 n 次,输出形如“ABCABCABC....”的字符串【举一反三】
  • Matlab: 生成对抗网络,使用Datastore结构输入mat格式数据
  • 系统架构设计师论文
  • 深度学习代码笔记
  • Android MVVM+coroutine+retrofit+flow+hilt
  • LSTM_预测价格问题_keras_代码实操
  • 喜讯:加速度商城系统全系列产品品牌全新升级为Shopfa
  • Java工程找不到javax.xml.bind.annotation包
  • 【flink番外篇】1、flink的23种常用算子介绍及详细示例(3)-window、distinct、join等
  • STM32 map文件详解
  • Kubernetes(K8s 1.27.x) 快速上手+实践,无废话纯享版
  • running小程序重要技术流程文档
  • 【ELK03】ES 索引的Mapping映射详解、数据类型和settings属性设置
  • 算法:常见的链表算法
  • 插入排序——直接插入排序和希尔排序(C语言实现)
  • 如何进行更好的面试回复之缓存函数在项目中的性能优化?
  • Advanced Renamer
  • 利用R语言heatmap.2函数进行聚类并画热图
  • Shell脚本如何使用 for 循环、while 循环、break 跳出循环和 continue 结束本次循环
  • Vue学习笔记-Vue3中的计算属性与监视属性
  • 【数据结构】拆分详解 - 二叉树的链式存储结构
  • 消费升级:无人零售的崛起与优势
  • 【MATLAB源码-第97期】基于matlab的能量谷优化算法(EVO)机器人栅格路径规划,输出做短路径图和适应度曲线。
  • git操作:使用vscode集成