【Python入门知识】NumPy数组迭代及连接
前言
嗨喽~大家好呀,这里是魔王呐 ❤ ~!
数组迭代
迭代意味着逐一遍历元素,当我们在 numpy 中处理多维数组时,
可以使用 python 的基本 for 循环来完成此操作。
如果我们对 1-D 数组进行迭代,它将逐一遍历每个元素。
实例
迭代以下一维数组的元素:
import numpy as np
arr = np.array([1, 2, 3])
for x in arr:
print(x)
运行实例
更多python资料、源码、教程: 点击此处跳转文末名片获取
迭代 2-D 数组
在 2-D 数组中,它将遍历所有行。
实例
迭代以下二维数组的元素:
import numpy as np
arr = np.array([[1, 2, 3], [4, 5, 6]])
for x in arr:
print(x)
运行实例
如果我们迭代一个 n-D 数组,它将逐一遍历第 n-1 维。
如需返回实际值、标量,我们必须迭代每个维中的数组。
实例
迭代 2-D 数组的每个标量元素:
import numpy as np
arr = np.array([[1, 2, 3], [4, 5, 6]])
for x in arr:
for y in x:
print(y)
运行实例
迭代 3-D 数组
在 3-D 数组中,它将遍历所有 2-D 数组。
实例
迭代以下 3-D 数组的元素:
import numpy as np
arr = np.array([[[1, 2, 3], [4, 5, 6]], [[7, 8, 9], [10, 11, 12]]])
for x in arr:
print(x)
运行实例
要返回实际值、标量,我们必须迭代每个维中的数组。
更多python资料、源码、教程: 点击此处跳转文末名片获取
实例
迭代到标量:
import numpy as np
arr = np.array([[[1, 2, 3], [4, 5, 6]], [[7, 8, 9], [10, 11, 12]]])
for x in arr:
for y in x:
for z in y:
print(z)
运行实例
使用 nditer() 迭代数组
函数 nditer() 是一个辅助函数,从非常基本的迭代到非常高级的迭代都可以使用。它解决了我们在迭代中面临的一些基本问题,让我们通过例子进行介绍。
迭代每个标量元素
在基本的 for 循环中,迭代遍历数组的每个标量,我们需要使用 n 个 for 循环,对于具有高维数的数组可能很难编写。
实例
遍历以下 3-D 数组:
import numpy as np
arr = np.array([[[1, 2], [3, 4]], [[5, 6], [7, 8]]])
for x in np.nditer(arr):
print(x)
运行实例
迭代不同数据类型的数组
我们可以使用 op_dtypes 参数,并传递期望的数据类型,以在迭代时更改元素的数据类型。
NumPy 不会就地更改元素的数据类型(元素位于数组中),
因此它需要一些其他空间来执行此操作,该额外空间称为 buffer
,
为了在 nditer() 中启用它,我们传参 flags=[‘buffered’]
。
实例
以字符串形式遍历数组:
import numpy as np
arr = np.array([1, 2, 3])
for x in np.nditer(arr, flags=['buffered'], op_dtypes=['S']):
print(x)
运行实例
以不同的步长迭代
我们可以使用过滤,然后进行迭代。
实例
每遍历 2D 数组的一个标量元素,跳过 1 个元素:
import numpy as np
arr = np.array([[1, 2, 3, 4], [5, 6, 7, 8]])
for x in np.nditer(arr[:, ::2]):
print(x)
运行实例
更多python资料、源码、教程: 点击此处跳转文末名片获取
使用 ndenumerate() 进行枚举迭代
枚举是指逐一提及事物的序号。
有时,我们在迭代时需要元素的相应索引,对于这些用例,可以使用 ndenumerate() 方法。
实例
枚举以下 1D 数组元素:
import numpy as np
arr = np.array([1, 2, 3])
for idx, x in np.ndenumerate(arr):
print(idx, x)
运行实例
实例
枚举以下 2D 数组元素
import numpy as np
arr = np.array([[1, 2, 3, 4], [5, 6, 7, 8]])
for idx, x in np.ndenumerate(arr):
print(idx, x)
运行实例
连接 NumPy 数组
连接意味着将两个或多个数组的内容放在单个数组中。
在 SQL 中,我们基于键来连接表,而在 NumPy 中,我们按轴连接数组。
我们传递了一系列要与轴一起连接到 concatenate()
函数的数组。如果未显式传递轴,则将其视为 0。
实例
连接两个数组:
import numpy as np
arr1 = np.array([1, 2, 3])
arr2 = np.array([4, 5, 6])
arr = np.concatenate((arr1, arr2))
print(arr)
运行实例
实例
沿着行 (axis=1) 连接两个 2-D 数组:
import numpy as np
arr1 = np.array([[1, 2], [3, 4]])
arr2 = np.array([[5, 6], [7, 8]])
arr = np.concatenate((arr1, arr2), axis=1)
print(arr)
运行实例
使用堆栈函数连接数组
堆栈与级联相同,唯一的不同是堆栈是沿着新轴完成的。
我们可以沿着第二个轴连接两个一维数组,这将导致它们彼此重叠,即,堆叠(stacking)
。
我们传递了一系列要与轴一起连接到 concatenate()
方法的数组。如果未显式传递轴,则将其视为 0。
实例
import numpy as np
arr1 = np.array([1, 2, 3])
arr2 = np.array([4, 5, 6])
arr = np.stack((arr1, arr2), axis=1)
print(arr)
运行实例
沿行堆叠
NumPy 提供了一个辅助函数:hstack() 沿行堆叠。
实例
import numpy as np
arr1 = np.array([1, 2, 3])
arr2 = np.array([4, 5, 6])
arr = np.hstack((arr1, arr2))
print(arr)
运行实例
沿列堆叠
NumPy 提供了一个辅助函数:vstack() 沿列堆叠。
实例
import numpy as np
arr1 = np.array([1, 2, 3])
arr2 = np.array([4, 5, 6])
arr = np.vstack((arr1, arr2))
print(arr)
运行实例
更多python资料、源码、教程: 点击此处跳转文末名片获取
沿高度堆叠(深度)
NumPy 提供了一个辅助函数:dstack() 沿高度堆叠,该高度与深度相同。
实例
import numpy as np
arr1 = np.array([1, 2, 3])
arr2 = np.array([4, 5, 6])
arr = np.dstack((arr1, arr2))
print(arr)
运行实例
尾语 💝
要成功,先发疯,下定决心往前冲!
学习是需要长期坚持的,一步一个脚印地走向未来!
未来的你一定会感谢今天学习的你。
—— 心灵鸡汤
本文章到这里就结束啦~感兴趣的小伙伴可以复制代码去试试哦 😝