当前位置: 首页 > article >正文

使用 KITTI数据集训练YOLOX

1. 现在KITTI集后,首先将数据集转换为COCO数据集格式。

kitti_vis.py

import os
from pathlib import Path
import numpy as np
import cv2


def anno_vis(img, anno_list):
    for anno in anno_list:
        points = np.array(anno[4:8], dtype=np.float32)
        cv2.rectangle(img, (int(points[0]),int(points[1])), (int(points[2]),int(points[3])), (0, 0, 255), 2)
        cv2.putText(img, anno[0], (int(points[0]),int(points[1])), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 0, 255), 2)


    cv2.imshow('img', img)
    ret = cv2.waitKey(0)
    if ret == 27:
        exit(0)

if __name__ == '__main__':
    
    img_root = Path(r'D:\BaiduNetdiskDownload\CV\KITTI\KITTI-train_test-Image\training\image_2')
    label_root = Path(r'D:\BaiduNetdiskDownload\CV\KITTI\KITTI-train_test-Label\training\label_2')
    
    img_list = os.listdir(img_root)
    
    for img_name in img_list[:5]:
        img_name = Path(img_name)
        label_name = img_name.with_suffix('.txt')
        img = cv2.imread(str(img_root/img_name))
    
        with open(label_root/label_name) as f:
            l = [x.split() for x in f.read().strip().splitlines()]
        anno_vis(img, l)




 kitti_split.py

'''
用于将KITTI数据集的7000多张训练集分为:前4000张为训练集,4000-6000张为验证集,剩余为测试集
运行命令:
python ./tools/kitti_split.py --source_img_path ./KITTI_origin/training/image_2 --source_label_path ./KITTI_origin/training/label_2/
--dst_img_path ./KITTI_YOLOX/img --dst_label_path ./KITTI_YOLOX/label



    # img_root = Path(r'D:\BaiduNetdiskDownload\CV\KITTI\KITTI-train_test-Image\training\image_2')
    # label_root = Path(r'D:\BaiduNetdiskDownload\CV\KITTI\KITTI-train_test-Label\training\label_2')

'''


import os
import argparse
from pathlib import Path
import shutil
from tqdm import tqdm
from loguru import logger


def make_parser():
    parser = argparse.ArgumentParser("")   
    parser.add_argument('--source_img_path', default=r'D:\BaiduNetdiskDownload\CV\KITTI\KITTI-train_test-Image\training\image_2',  help="Specify original kitti img path")
    parser.add_argument('--source_label_path', default=r'D:\BaiduNetdiskDownload\CV\KITTI\KITTI-train_test-Label\training\label_2',help="Specify original kitti label path")

    parser.add_argument('--dst_img_path', default=r'D:\BaiduNetdiskDownload\CV\KITTI\KITTI_YOLOX\img',help="Specify splited kitti img path")
    parser.add_argument('--dst_label_path', default=r'D:\BaiduNetdiskDownload\CV\KITTI\KITTI_YOLOX\label',help="Specify splited kitti label path")

    return parser

def check_dir(dir):
    if Path(dir).is_dir() == False:
        Path(dir).mkdir(parents=True, exist_ok=True)
        logger.info('Created %s' % dir)

if __name__ == '__main__':
    args = make_parser().parse_args()

    img_root = Path(args.source_img_path)
    label_root = Path(args.source_label_path)

    # img_root = Path(r'D:\BaiduNetdiskDownload\CV\KITTI\KITTI-train_test-Image\training\image_2')
    # label_root = Path(r'D:\BaiduNetdiskDownload\CV\KITTI\KITTI-train_test-Label\training\label_2')


    img_list = os.listdir(img_root)
    dst_train_img_root = Path(args.dst_img_path)/'train'
    dst_val_img_root = Path(args.dst_img_path)/'val'
    dst_test_img_root = Path(args.dst_img_path)/'test'

    dst_train_label_root = Path(args.dst_label_path)/'train'
    dst_val_label_root = Path(args.dst_label_path)/'val'
    dst_test_label_root = Path(args.dst_label_path)/'test'

    check_dir(dst_train_img_root)
    check_dir(dst_val_img_root)
    check_dir(dst_test_img_root)
    check_dir(dst_train_label_root)
    check_dir(dst_val_label_root)
    check_dir(dst_test_label_root)

    for img_name in tqdm(img_list):
        if int(Path(img_name).stem) < 4000:
            shutil.copyfile(img_root/img_name, dst_train_img_root/img_name)
            shutil.copyfile(label_root/(Path(img_name).with_suffix('.txt')), dst_train_label_root/(Path(img_name).with_suffix('.txt')))
            
        elif int(Path(img_name).stem) < 6000:
            shutil.copyfile(img_root/img_name, dst_val_img_root/img_name)
            shutil.copyfile(label_root/(Path(img_name).with_suffix('.txt')), dst_val_label_root/(Path(img_name).with_suffix('.txt')))
            
        else:
            shutil.copyfile(img_root/img_name, dst_test_img_root/img_name)
            shutil.copyfile(label_root/(Path(img_name).with_suffix('.txt')), dst_test_label_root/(Path(img_name).with_suffix('.txt')))
            
            

kitti2coco.py

'''
KITTI标注转COCO标注

运行命令:

(1)训练集:python tools/kitti2coco.py --img_path ./KITTI_YOLOX/img/train --label_path ./KITTI_YOLOX/label/train --dst_json ./train.json
(2)验证集:python tools/kitti2coco.py --img_path ./KITTI_YOLOX/img/val --label_path ./KITTI_YOLOX/label/val --dst_json ./val.json
(3)测试集:python tools/kitti2coco.py --img_path ./KITTI_YOLOX/img/test --label_path ./KITTI_YOLOX/label/test --dst_json ./test.json
'''
import os
import json
import argparse
from pathlib import Path
import cv2
from tqdm import tqdm

# parser.add_argument('--dst_img_path', default=r'D:\BaiduNetdiskDownload\CV\KITTI\KITTI_YOLOX\img',
#                     help="Specify splited kitti img path")
# parser.add_argument('--dst_label_path', default=r'D:\BaiduNetdiskDownload\CV\KITTI\KITTI_YOLOX\label',
#                     help="Specify splited kitti label path")



def make_parser():
    # parser = argparse.ArgumentParser("Kitti to COCO format")
    # parser.add_argument('--img_path', type=str, default=r'D:\BaiduNetdiskDownload\CV\KITTI\KITTI_YOLOX\img\train',
    #                                                     help='Specify img path')
    # parser.add_argument('--label_path', type=str, default=r'D:\BaiduNetdiskDownload\CV\KITTI\KITTI_YOLOX\label\train',
    #                     help='Specify label path')
    # parser.add_argument('--dst_json', type=str, default=r'D:\BaiduNetdiskDownload\CV\KITTI\train.json', help='Specify generated json file name')



    # parser = argparse.ArgumentParser("Kitti to COCO format")
    # parser.add_argument('--img_path', type=str, default=r'D:\BaiduNetdiskDownload\CV\KITTI\KITTI_YOLOX\img\test',
    #                                                     help='Specify img path')
    # parser.add_argument('--label_path', type=str, default=r'D:\BaiduNetdiskDownload\CV\KITTI\KITTI_YOLOX\label\test',
    #                     help='Specify label path')
    # parser.add_argument('--dst_json', type=str, default=r'D:\BaiduNetdiskDownload\CV\KITTI\test.json', help='Specify generated json file name')
    #

    parser = argparse.ArgumentParser("Kitti to COCO format")
    parser.add_argument('--img_path', type=str, default=r'D:\BaiduNetdiskDownload\CV\KITTI\KITTI_YOLOX\img\val',
                                                        help='Specify img path')
    parser.add_argument('--label_path', type=str, default=r'D:\BaiduNetdiskDownload\CV\KITTI\KITTI_YOLOX\label\val',
                        help='Specify label path')
    parser.add_argument('--dst_json', type=str, default=r'D:\BaiduNetdiskDownload\CV\KITTI\val.json', help='Specify generated json file name')


    return parser

if __name__ == '__main__':
    args = make_parser().parse_args()
    img_root = Path(args.img_path)
    label_root = Path(args.label_path)

    category_dict = {
        1:'Car', 
        2:'Van', 
        3:'Pedestrian', 
        4:'Person_sitting', 
        5:'Truck',  
        6:'Cyclist', 
        7:'Tram'
    }

    category_name2id_dict = {v:k for k, v in category_dict.items()}


    img_list = os.listdir(img_root)

    img_id = 0
    anno_id = 0

    json_images_list = list()
    json_annotations_list = list()
    json_categories_list = list()

    for img_name in tqdm(img_list):

        img = cv2.imread(str(img_root/img_name))
        img_height, img_width, _ = img.shape
        img_dict = {
            'license': None,
            'file_name': img_name,
            'coco_url': None,
            'height': img_height, 
            'width': img_width, 
            'date_captured': None, 
            'flickr_url': None,
            'id': img_id
        }
        json_images_list.append(img_dict)
        
        label_name = Path(img_name).with_suffix('.txt')
        with open(label_root/label_name) as f:
            anno_list = [x.split() for x in f.read().strip().splitlines()]
        for anno in anno_list:
            if anno[0] in category_name2id_dict:
                bbox = [float(anno[4]), float(anno[5]), 
                        float(anno[6])-float(anno[4]), float(anno[7])-float(anno[5])] #   anno[4:8]
                area = bbox[2]*bbox[3]
                
                anno_dict = {
                    'segmentation': None,
                    'area': area,
                    'iscrowd': 0,
                    'image_id': img_id,
                    'bbox': bbox, 
                    'category_id': category_name2id_dict[anno[0]],
                    'id': anno_id
                }
                json_annotations_list.append(anno_dict)
                anno_id += 1
        img_id += 1
        
    for id in category_dict:
        json_categories_list.append({
            'supercategory': None,
            'id': id,
            'name': category_dict[id]
        })
        
    json_dict = {
        'images': json_images_list,
        'annotations': json_annotations_list,
        'categories': json_categories_list
    }


    with open(args.dst_json,"w") as f:
        json.dump(json_dict,f)






    
    
    
    
    
    

 COCO_vis.py

'''
验证转换后的json格式标注的准确性。
运行命令:python tools/COCO_vis.py --img_root ./KITTI_YOLOX/img/train --label_file ./KITTI_YOLOX/train.json
'''

import argparse
from pathlib import Path
import numpy as np
import cv2
from pycocotools.coco import COCO

# parser.add_argument('--img_path', type=str, default=r'D:\BaiduNetdiskDownload\CV\KITTI\KITTI_YOLOX\img\val',
#                     help='Specify img path')
# parser.add_argument('--label_path', type=str, default=r'D:\BaiduNetdiskDownload\CV\KITTI\KITTI_YOLOX\label\val',
#                     help='Specify label path')
# parser.add_argument('--dst_json', type=str, default=r'D:\BaiduNetdiskDownload\CV\KITTI\val.json',
#                     help='Specify generated json file name')


def make_parser():
    parser = argparse.ArgumentParser("")        
    parser.add_argument('--img_root', type=str, default=r'D:\BaiduNetdiskDownload\CV\KITTI\KITTI_YOLOX\img\train', help='Specify img path')
    parser.add_argument('--label_file', type=str, default=r'D:\BaiduNetdiskDownload\CV\KITTI\train.json', help='Specify COCO format label file')

    return parser

if __name__ == '__main__':
    args = make_parser().parse_args()
        
    img_root = args.img_root
    anno_file = args.label_file

    coco = COCO(anno_file)
    img_ids = coco.getImgIds()

    category_list = coco.loadCats(coco.getCatIds())
    label_id2name = dict([(item['id'], item['name']) for item in category_list])

    for img_id in img_ids:
        img_info = coco.loadImgs(img_id)[0]
        print('img name: ', str(Path(img_root)/img_info['file_name']))
        img = cv2.imread(str(Path(img_root)/img_info['file_name']))
        
        img_width = img_info["width"]
        img_height = img_info["height"]
        anno_ids = coco.getAnnIds(imgIds=[img_id], iscrowd=False)
        result_anno_list = list()
        
        for anno_id in anno_ids:
            annotation = coco.loadAnns(anno_id)
            x1 = np.max((0, annotation[0]["bbox"][0]))
            y1 = np.max((0, annotation[0]["bbox"][1]))
            x2 = np.min((img_width, x1 + np.max((0, annotation[0]["bbox"][2]))))
            y2 = np.min((img_height, y1 + np.max((0, annotation[0]["bbox"][3]))))
            
            
            label = label_id2name[annotation[0]['category_id']]
            result_anno_list.append([label, x1, y1, x2, y2])

            cv2.rectangle(img, (int(x1), int(y1)), (int(x2), int(y2)), (0,0,255), 1)
            cv2.putText(img, label, (int(x1), int(y1)), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (128,255,255))
        cv2.imshow('img', img)
        ret = cv2.waitKey(0)    
        if ret == 27:
            exit(0)

2.按照训练COCO数据集合的指令训练KITTI即可

python -m yolox.tools.train -n yolox-s -d 1 -b 32 --fp16
或者: python -m yolox.tools.train -f exps/default/yolox_s.py -d 1 -b 32 --fp
16
 olox) xuefei@f123:/mnt/d/work/study/detect/7$
(yolox) xuefei@f123:/mnt/d/work/study/detect/7$ python -m yolox.tools.train  -f exps/kitti_car_detection/yolox_s.py  -d 1 -b 16 --fp16
2024-02-05 23:08:04 | INFO     | yolox.core.trainer:130 - args: Namespace(batch_size=16, cache=False, ckpt=None, devices=1, dist_backend='nccl', dist_url=None, exp_file='exps/kitti_car_detection/yolox_s.py', experiment_name='yolox_s', fp16=True, logger='tensorboard', machine_rank=0, name=None, num_machines=1, occupy=False, opts=[], resume=False, start_epoch=None)
2024-02-05 23:08:04 | INFO     | yolox.core.trainer:131 - exp value:
╒═══════════════════╤═══════════════════════════════════════════════════════════════╕
│ keys              │ values                                                        │
╞═══════════════════╪═══════════════════════════════════════════════════════════════╡
│ seed              │ None                                                          │
├───────────────────┼───────────────────────────────────────────────────────────────┤
│ output_dir        │ './YOLOX_outputs'                                             │
├───────────────────┼───────────────────────────────────────────────────────────────┤
│ print_interval    │ 10                                                            │
├───────────────────┼───────────────────────────────────────────────────────────────┤
│ eval_interval     │ 10                                                            │
├───────────────────┼───────────────────────────────────────────────────────────────┤
│ num_classes       │ 7                                                             │
├───────────────────┼───────────────────────────────────────────────────────────────┤
│ depth             │ 0.33                                                          │
├───────────────────┼───────────────────────────────────────────────────────────────┤
│ width             │ 0.5                                                           │
├───────────────────┼───────────────────────────────────────────────────────────────┤
│ act               │ 'silu'                                                        │
├───────────────────┼───────────────────────────────────────────────────────────────┤
│ data_num_workers  │ 16                                                            │
├───────────────────┼───────────────────────────────────────────────────────────────┤
│ input_size        │ (256, 832)                                                    │
├───────────────────┼───────────────────────────────────────────────────────────────┤
│ multiscale_range  │ 5                                                             │
├───────────────────┼───────────────────────────────────────────────────────────────┤
│ data_dir          │ '/mnt/d/BaiduNetdiskDownload/CV/KITTI/KITTI_YOLOX/img/'       │
├───────────────────┼───────────────────────────────────────────────────────────────┤
│ train_ann         │ '/mnt/d/BaiduNetdiskDownload/CV/KITTI/KITTI_YOLOX/train.json' │
├───────────────────┼───────────────────────────────────────────────────────────────┤
│ val_ann           │ '/mnt/d/BaiduNetdiskDownload/CV/KITTI/KITTI_YOLOX/val.json'   │
├───────────────────┼───────────────────────────────────────────────────────────────┤
│ test_ann          │ '/mnt/d/BaiduNetdiskDownload/CV/KITTI/KITTI_YOLOX/test.json'  │
├───────────────────┼───────────────────────────────────────────────────────────────┤
│ mosaic_prob       │ 1.0                                                           │
├───────────────────┼───────────────────────────────────────────────────────────────┤
│ mixup_prob        │ 1.0                                                           │
├───────────────────┼───────────────────────────────────────────────────────────────┤
│ hsv_prob          │ 1.0                                                           │
├───────────────────┼───────────────────────────────────────────────────────────────┤
│ flip_prob         │ 0.5                                                           │
├───────────────────┼───────────────────────────────────────────────────────────────┤
│ degrees           │ 10.0                                                          │
├───────────────────┼───────────────────────────────────────────────────────────────┤
│ translate         │ 0.1                                                           │
├───────────────────┼───────────────────────────────────────────────────────────────┤
│ mosaic_scale      │ (0.1, 2)                                                      │
├───────────────────┼───────────────────────────────────────────────────────────────┤
│ enable_mixup      │ True                                                          │
├───────────────────┼───────────────────────────────────────────────────────────────┤
│ mixup_scale       │ (0.5, 1.5)                                                    │
├───────────────────┼───────────────────────────────────────────────────────────────┤
│ shear             │ 2.0                                                           │
├───────────────────┼───────────────────────────────────────────────────────────────┤
│ warmup_epochs     │ 5                                                             │
├───────────────────┼───────────────────────────────────────────────────────────────┤
│ max_epoch         │ 300                                                           │
├───────────────────┼───────────────────────────────────────────────────────────────┤
│ warmup_lr         │ 0                                                             │
├───────────────────┼───────────────────────────────────────────────────────────────┤
│ min_lr_ratio      │ 0.05                                                          │
├───────────────────┼───────────────────────────────────────────────────────────────┤
│ basic_lr_per_img  │ 0.00015625                                                    │
├───────────────────┼───────────────────────────────────────────────────────────────┤
│ scheduler         │ 'yoloxwarmcos'                                                │
├───────────────────┼───────────────────────────────────────────────────────────────┤
│ no_aug_epochs     │ 80                                                            │
├───────────────────┼───────────────────────────────────────────────────────────────┤
│ ema               │ True                                                          │
├───────────────────┼───────────────────────────────────────────────────────────────┤
│ weight_decay      │ 0.0005                                                        │
├───────────────────┼───────────────────────────────────────────────────────────────┤
│ momentum          │ 0.9                                                           │
├───────────────────┼───────────────────────────────────────────────────────────────┤
│ save_history_ckpt │ True                                                          │
├───────────────────┼───────────────────────────────────────────────────────────────┤
│ exp_name          │ 'yolox_s'                                                     │
├───────────────────┼───────────────────────────────────────────────────────────────┤
│ test_size         │ (256, 832)                                                    │
├───────────────────┼───────────────────────────────────────────────────────────────┤
│ test_conf         │ 0.01                                                          │
├───────────────────┼───────────────────────────────────────────────────────────────┤
│ nmsthre           │ 0.65                                                          │
╘═══════════════════╧═══════════════════════════════════════════════════════════════╛
2024-02-05 23:08:05 | INFO     | yolox.core.trainer:137 - Model Summary: Params: 8.94M, Gflops: 13.92
2024-02-05 23:08:07 | INFO     | yolox.data.datasets.kitti:64 - loading annotations into memory...
2024-02-05 23:08:07 | INFO     | yolox.data.datasets.kitti:64 - Done (t=0.05s)
2024-02-05 23:08:07 | INFO     | pycocotools.coco:86 - creating index...
2024-02-05 23:08:07 | INFO     | pycocotools.coco:86 - index created!
2024-02-05 23:08:08 | INFO     | yolox.core.trainer:155 - init prefetcher, this might take one minute or less...
2024-02-05 23:08:17 | INFO     | yolox.data.datasets.kitti:64 - loading annotations into memory...
2024-02-05 23:08:17 | INFO     | yolox.data.datasets.kitti:64 - Done (t=0.05s)
2024-02-05 23:08:17 | INFO     | pycocotools.coco:86 - creating index...
2024-02-05 23:08:17 | INFO     | pycocotools.coco:86 - index created!
2024-02-05 23:08:17 | INFO     | yolox.core.trainer:191 - Training start...
2024-02-05 23:08:17 | INFO     | yolox.core.trainer:192 -
YOLOX(
  (backbone): YOLOPAFPN(
    (backbone): CSPDarknet(
      (stem): Focus(
        (conv): BaseConv(
          (conv): Conv2d(12, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
          (bn): BatchNorm2d(32, eps=0.001, momentum=0.03, affine=True, track_running_stats=True)
          (act): SiLU(inplace=True)
        )
      )
      (dark2): Sequential(
        (0): BaseConv(
          (conv): Conv2d(32, 64, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), bias=False)
          (bn): BatchNorm2d(64, eps=0.001, momentum=0.03, affine=True, track_running_stats=True)
          (act): SiLU(inplace=True)
        )
        (1): CSPLayer(
          (conv1): BaseConv(
            (conv): Conv2d(64, 32, kernel_size=(1, 1), stride=(1, 1), bias=False)
            (bn): BatchNorm2d(32, eps=0.001, momentum=0.03, affine=True, track_running_stats=True)
            (act): SiLU(inplace=True)
          )
          (conv2): BaseConv(
            (conv): Conv2d(64, 32, kernel_size=(1, 1), stride=(1, 1), bias=False)
            (bn): BatchNorm2d(32, eps=0.001, momentum=0.03, affine=True, track_running_stats=True)
            (act): SiLU(inplace=True)
          )
          (conv3): BaseConv(
            (conv): Conv2d(64, 64, kernel_size=(1, 1), stride=(1, 1), bias=False)
            (bn): BatchNorm2d(64, eps=0.001, momentum=0.03, affine=True, track_running_stats=True)
            (act): SiLU(inplace=True)
          )
          (m): Sequential(
            (0): Bottleneck(
              (conv1): BaseConv(
                (conv): Conv2d(32, 32, kernel_size=(1, 1), stride=(1, 1), bias=False)
                (bn): BatchNorm2d(32, eps=0.001, momentum=0.03, affine=True, track_running_stats=True)
                (act): SiLU(inplace=True)
              )
              (conv2): BaseConv(
                (conv): Conv2d(32, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
                (bn): BatchNorm2d(32, eps=0.001, momentum=0.03, affine=True, track_running_stats=True)
                (act): SiLU(inplace=True)
              )
            )
          )
        )
      )
      (dark3): Sequential(
        (0): BaseConv(
          (conv): Conv2d(64, 128, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), bias=False)
          (bn): BatchNorm2d(128, eps=0.001, momentum=0.03, affine=True, track_running_stats=True)
          (act): SiLU(inplace=True)
        )
        (1): CSPLayer(
          (conv1): BaseConv(
            (conv): Conv2d(128, 64, kernel_size=(1, 1), stride=(1, 1), bias=False)
            (bn): BatchNorm2d(64, eps=0.001, momentum=0.03, affine=True, track_running_stats=True)
            (act): SiLU(inplace=True)
          )
          (conv2): BaseConv(
            (conv): Conv2d(128, 64, kernel_size=(1, 1), stride=(1, 1), bias=False)
            (bn): BatchNorm2d(64, eps=0.001, momentum=0.03, affine=True, track_running_stats=True)
            (act): SiLU(inplace=True)
          )
          (conv3): BaseConv(
            (conv): Conv2d(128, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)
            (bn): BatchNorm2d(128, eps=0.001, momentum=0.03, affine=True, track_running_stats=True)
            (act): SiLU(inplace=True)
          )
          (m): Sequential(
            (0): Bottleneck(
              (conv1): BaseConv(
                (conv): Conv2d(64, 64, kernel_size=(1, 1), stride=(1, 1), bias=False)
                (bn): BatchNorm2d(64, eps=0.001, momentum=0.03, affine=True, track_running_stats=True)
                (act): SiLU(inplace=True)
              )
              (conv2): BaseConv(
                (conv): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
                (bn): BatchNorm2d(64, eps=0.001, momentum=0.03, affine=True, track_running_stats=True)
                (act): SiLU(inplace=True)
              )
            )
            (1): Bottleneck(
              (conv1): BaseConv(
                (conv): Conv2d(64, 64, kernel_size=(1, 1), stride=(1, 1), bias=False)
                (bn): BatchNorm2d(64, eps=0.001, momentum=0.03, affine=True, track_running_stats=True)
                (act): SiLU(inplace=True)
              )
              (conv2): BaseConv(
                (conv): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
                (bn): BatchNorm2d(64, eps=0.001, momentum=0.03, affine=True, track_running_stats=True)
                (act): SiLU(inplace=True)
              )
            )
            (2): Bottleneck(
              (conv1): BaseConv(
                (conv): Conv2d(64, 64, kernel_size=(1, 1), stride=(1, 1), bias=False)
                (bn): BatchNorm2d(64, eps=0.001, momentum=0.03, affine=True, track_running_stats=True)
                (act): SiLU(inplace=True)
              )
              (conv2): BaseConv(
                (conv): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
                (bn): BatchNorm2d(64, eps=0.001, momentum=0.03, affine=True, track_running_stats=True)
                (act): SiLU(inplace=True)
              )
            )
          )
        )
      )
      (dark4): Sequential(
        (0): BaseConv(
          (conv): Conv2d(128, 256, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), bias=False)
          (bn): BatchNorm2d(256, eps=0.001, momentum=0.03, affine=True, track_running_stats=True)
          (act): SiLU(inplace=True)
        )
        (1): CSPLayer(
          (conv1): BaseConv(
            (conv): Conv2d(256, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)
            (bn): BatchNorm2d(128, eps=0.001, momentum=0.03, affine=True, track_running_stats=True)
            (act): SiLU(inplace=True)
          )
          (conv2): BaseConv(
            (conv): Conv2d(256, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)
            (bn): BatchNorm2d(128, eps=0.001, momentum=0.03, affine=True, track_running_stats=True)
            (act): SiLU(inplace=True)
          )
          (conv3): BaseConv(
            (conv): Conv2d(256, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
            (bn): BatchNorm2d(256, eps=0.001, momentum=0.03, affine=True, track_running_stats=True)
            (act): SiLU(inplace=True)
          )
          (m): Sequential(
            (0): Bottleneck(
              (conv1): BaseConv(
                (conv): Conv2d(128, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)
                (bn): BatchNorm2d(128, eps=0.001, momentum=0.03, affine=True, track_running_stats=True)
                (act): SiLU(inplace=True)
              )
              (conv2): BaseConv(
                (conv): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
                (bn): BatchNorm2d(128, eps=0.001, momentum=0.03, affine=True, track_running_stats=True)
                (act): SiLU(inplace=True)
              )
            )
            (1): Bottleneck(
              (conv1): BaseConv(
                (conv): Conv2d(128, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)
                (bn): BatchNorm2d(128, eps=0.001, momentum=0.03, affine=True, track_running_stats=True)
                (act): SiLU(inplace=True)
              )
              (conv2): BaseConv(
                (conv): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
                (bn): BatchNorm2d(128, eps=0.001, momentum=0.03, affine=True, track_running_stats=True)
                (act): SiLU(inplace=True)
              )
            )
            (2): Bottleneck(
              (conv1): BaseConv(
                (conv): Conv2d(128, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)
                (bn): BatchNorm2d(128, eps=0.001, momentum=0.03, affine=True, track_running_stats=True)
                (act): SiLU(inplace=True)
              )
              (conv2): BaseConv(
                (conv): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
                (bn): BatchNorm2d(128, eps=0.001, momentum=0.03, affine=True, track_running_stats=True)
                (act): SiLU(inplace=True)
              )
            )
          )
        )
      )
      (dark5): Sequential(
        (0): BaseConv(
          (conv): Conv2d(256, 512, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), bias=False)
          (bn): BatchNorm2d(512, eps=0.001, momentum=0.03, affine=True, track_running_stats=True)
          (act): SiLU(inplace=True)
        )
        (1): SPPBottleneck(
          (conv1): BaseConv(
            (conv): Conv2d(512, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
            (bn): BatchNorm2d(256, eps=0.001, momentum=0.03, affine=True, track_running_stats=True)
            (act): SiLU(inplace=True)
          )
          (m): ModuleList(
            (0): MaxPool2d(kernel_size=5, stride=1, padding=2, dilation=1, ceil_mode=False)
            (1): MaxPool2d(kernel_size=9, stride=1, padding=4, dilation=1, ceil_mode=False)
            (2): MaxPool2d(kernel_size=13, stride=1, padding=6, dilation=1, ceil_mode=False)
          )
          (conv2): BaseConv(
            (conv): Conv2d(1024, 512, kernel_size=(1, 1), stride=(1, 1), bias=False)
            (bn): BatchNorm2d(512, eps=0.001, momentum=0.03, affine=True, track_running_stats=True)
            (act): SiLU(inplace=True)
          )
        )
        (2): CSPLayer(
          (conv1): BaseConv(
            (conv): Conv2d(512, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
            (bn): BatchNorm2d(256, eps=0.001, momentum=0.03, affine=True, track_running_stats=True)
            (act): SiLU(inplace=True)
          )
          (conv2): BaseConv(
            (conv): Conv2d(512, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
            (bn): BatchNorm2d(256, eps=0.001, momentum=0.03, affine=True, track_running_stats=True)
            (act): SiLU(inplace=True)
          )
          (conv3): BaseConv(
            (conv): Conv2d(512, 512, kernel_size=(1, 1), stride=(1, 1), bias=False)
            (bn): BatchNorm2d(512, eps=0.001, momentum=0.03, affine=True, track_running_stats=True)
            (act): SiLU(inplace=True)
          )
          (m): Sequential(
            (0): Bottleneck(
              (conv1): BaseConv(
                (conv): Conv2d(256, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
                (bn): BatchNorm2d(256, eps=0.001, momentum=0.03, affine=True, track_running_stats=True)
                (act): SiLU(inplace=True)
              )
              (conv2): BaseConv(
                (conv): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
                (bn): BatchNorm2d(256, eps=0.001, momentum=0.03, affine=True, track_running_stats=True)
                (act): SiLU(inplace=True)
              )
            )
          )
        )
      )
    )
    (upsample): Upsample(scale_factor=2.0, mode=nearest)
    (lateral_conv0): BaseConv(
      (conv): Conv2d(512, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
      (bn): BatchNorm2d(256, eps=0.001, momentum=0.03, affine=True, track_running_stats=True)
      (act): SiLU(inplace=True)
    )
    (C3_p4): CSPLayer(
      (conv1): BaseConv(
        (conv): Conv2d(512, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)
        (bn): BatchNorm2d(128, eps=0.001, momentum=0.03, affine=True, track_running_stats=True)
        (act): SiLU(inplace=True)
      )
      (conv2): BaseConv(
        (conv): Conv2d(512, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)
        (bn): BatchNorm2d(128, eps=0.001, momentum=0.03, affine=True, track_running_stats=True)
        (act): SiLU(inplace=True)
      )
      (conv3): BaseConv(
        (conv): Conv2d(256, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
        (bn): BatchNorm2d(256, eps=0.001, momentum=0.03, affine=True, track_running_stats=True)
        (act): SiLU(inplace=True)
      )
      (m): Sequential(
        (0): Bottleneck(
          (conv1): BaseConv(
            (conv): Conv2d(128, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)
            (bn): BatchNorm2d(128, eps=0.001, momentum=0.03, affine=True, track_running_stats=True)
            (act): SiLU(inplace=True)
          )
          (conv2): BaseConv(
            (conv): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
            (bn): BatchNorm2d(128, eps=0.001, momentum=0.03, affine=True, track_running_stats=True)
            (act): SiLU(inplace=True)
          )
        )
      )
    )
    (reduce_conv1): BaseConv(
      (conv): Conv2d(256, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)
      (bn): BatchNorm2d(128, eps=0.001, momentum=0.03, affine=True, track_running_stats=True)
      (act): SiLU(inplace=True)
    )
    (C3_p3): CSPLayer(
      (conv1): BaseConv(
        (conv): Conv2d(256, 64, kernel_size=(1, 1), stride=(1, 1), bias=False)
        (bn): BatchNorm2d(64, eps=0.001, momentum=0.03, affine=True, track_running_stats=True)
        (act): SiLU(inplace=True)
      )
      (conv2): BaseConv(
        (conv): Conv2d(256, 64, kernel_size=(1, 1), stride=(1, 1), bias=False)
        (bn): BatchNorm2d(64, eps=0.001, momentum=0.03, affine=True, track_running_stats=True)
        (act): SiLU(inplace=True)
      )
      (conv3): BaseConv(
        (conv): Conv2d(128, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)
        (bn): BatchNorm2d(128, eps=0.001, momentum=0.03, affine=True, track_running_stats=True)
        (act): SiLU(inplace=True)
      )
      (m): Sequential(
        (0): Bottleneck(
          (conv1): BaseConv(
            (conv): Conv2d(64, 64, kernel_size=(1, 1), stride=(1, 1), bias=False)
            (bn): BatchNorm2d(64, eps=0.001, momentum=0.03, affine=True, track_running_stats=True)
            (act): SiLU(inplace=True)
          )
          (conv2): BaseConv(
            (conv): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
            (bn): BatchNorm2d(64, eps=0.001, momentum=0.03, affine=True, track_running_stats=True)
            (act): SiLU(inplace=True)
          )
        )
      )
    )
    (bu_conv2): BaseConv(
      (conv): Conv2d(128, 128, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), bias=False)
      (bn): BatchNorm2d(128, eps=0.001, momentum=0.03, affine=True, track_running_stats=True)
      (act): SiLU(inplace=True)
    )
    (C3_n3): CSPLayer(
      (conv1): BaseConv(
        (conv): Conv2d(256, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)
        (bn): BatchNorm2d(128, eps=0.001, momentum=0.03, affine=True, track_running_stats=True)
        (act): SiLU(inplace=True)
      )
      (conv2): BaseConv(
        (conv): Conv2d(256, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)
        (bn): BatchNorm2d(128, eps=0.001, momentum=0.03, affine=True, track_running_stats=True)
        (act): SiLU(inplace=True)
      )
      (conv3): BaseConv(
        (conv): Conv2d(256, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
        (bn): BatchNorm2d(256, eps=0.001, momentum=0.03, affine=True, track_running_stats=True)
        (act): SiLU(inplace=True)
      )
      (m): Sequential(
        (0): Bottleneck(
          (conv1): BaseConv(
            (conv): Conv2d(128, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)
            (bn): BatchNorm2d(128, eps=0.001, momentum=0.03, affine=True, track_running_stats=True)
            (act): SiLU(inplace=True)
          )
          (conv2): BaseConv(
            (conv): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
            (bn): BatchNorm2d(128, eps=0.001, momentum=0.03, affine=True, track_running_stats=True)
            (act): SiLU(inplace=True)
          )
        )
      )
    )
    (bu_conv1): BaseConv(
      (conv): Conv2d(256, 256, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), bias=False)
      (bn): BatchNorm2d(256, eps=0.001, momentum=0.03, affine=True, track_running_stats=True)
      (act): SiLU(inplace=True)
    )
    (C3_n4): CSPLayer(
      (conv1): BaseConv(
        (conv): Conv2d(512, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
        (bn): BatchNorm2d(256, eps=0.001, momentum=0.03, affine=True, track_running_stats=True)
        (act): SiLU(inplace=True)
      )
      (conv2): BaseConv(
        (conv): Conv2d(512, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
        (bn): BatchNorm2d(256, eps=0.001, momentum=0.03, affine=True, track_running_stats=True)
        (act): SiLU(inplace=True)
      )
      (conv3): BaseConv(
        (conv): Conv2d(512, 512, kernel_size=(1, 1), stride=(1, 1), bias=False)
        (bn): BatchNorm2d(512, eps=0.001, momentum=0.03, affine=True, track_running_stats=True)
        (act): SiLU(inplace=True)
      )
      (m): Sequential(
        (0): Bottleneck(
          (conv1): BaseConv(
            (conv): Conv2d(256, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
            (bn): BatchNorm2d(256, eps=0.001, momentum=0.03, affine=True, track_running_stats=True)
            (act): SiLU(inplace=True)
          )
          (conv2): BaseConv(
            (conv): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
            (bn): BatchNorm2d(256, eps=0.001, momentum=0.03, affine=True, track_running_stats=True)
            (act): SiLU(inplace=True)
          )
        )
      )
    )
  )
  (head): YOLOXHead(
    (cls_convs): ModuleList(
      (0): Sequential(
        (0): BaseConv(
          (conv): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
          (bn): BatchNorm2d(128, eps=0.001, momentum=0.03, affine=True, track_running_stats=True)
          (act): SiLU(inplace=True)
        )
        (1): BaseConv(
          (conv): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
          (bn): BatchNorm2d(128, eps=0.001, momentum=0.03, affine=True, track_running_stats=True)
          (act): SiLU(inplace=True)
        )
      )
      (1): Sequential(
        (0): BaseConv(
          (conv): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
          (bn): BatchNorm2d(128, eps=0.001, momentum=0.03, affine=True, track_running_stats=True)
          (act): SiLU(inplace=True)
        )
        (1): BaseConv(
          (conv): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
          (bn): BatchNorm2d(128, eps=0.001, momentum=0.03, affine=True, track_running_stats=True)
          (act): SiLU(inplace=True)
        )
      )
      (2): Sequential(
        (0): BaseConv(
          (conv): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
          (bn): BatchNorm2d(128, eps=0.001, momentum=0.03, affine=True, track_running_stats=True)
          (act): SiLU(inplace=True)
        )
        (1): BaseConv(
          (conv): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
          (bn): BatchNorm2d(128, eps=0.001, momentum=0.03, affine=True, track_running_stats=True)
          (act): SiLU(inplace=True)
        )
      )
    )
    (reg_convs): ModuleList(
      (0): Sequential(
        (0): BaseConv(
          (conv): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
          (bn): BatchNorm2d(128, eps=0.001, momentum=0.03, affine=True, track_running_stats=True)
          (act): SiLU(inplace=True)
        )
        (1): BaseConv(
          (conv): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
          (bn): BatchNorm2d(128, eps=0.001, momentum=0.03, affine=True, track_running_stats=True)
          (act): SiLU(inplace=True)
        )
      )
      (1): Sequential(
        (0): BaseConv(
          (conv): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
          (bn): BatchNorm2d(128, eps=0.001, momentum=0.03, affine=True, track_running_stats=True)
          (act): SiLU(inplace=True)
        )
        (1): BaseConv(
          (conv): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
          (bn): BatchNorm2d(128, eps=0.001, momentum=0.03, affine=True, track_running_stats=True)
          (act): SiLU(inplace=True)
        )
      )
      (2): Sequential(
        (0): BaseConv(
          (conv): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
          (bn): BatchNorm2d(128, eps=0.001, momentum=0.03, affine=True, track_running_stats=True)
          (act): SiLU(inplace=True)
        )
        (1): BaseConv(
          (conv): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
          (bn): BatchNorm2d(128, eps=0.001, momentum=0.03, affine=True, track_running_stats=True)
          (act): SiLU(inplace=True)
        )
      )
    )
    (cls_preds): ModuleList(
      (0): Conv2d(128, 7, kernel_size=(1, 1), stride=(1, 1))
      (1): Conv2d(128, 7, kernel_size=(1, 1), stride=(1, 1))
      (2): Conv2d(128, 7, kernel_size=(1, 1), stride=(1, 1))
    )
    (reg_preds): ModuleList(
      (0): Conv2d(128, 4, kernel_size=(1, 1), stride=(1, 1))
      (1): Conv2d(128, 4, kernel_size=(1, 1), stride=(1, 1))
      (2): Conv2d(128, 4, kernel_size=(1, 1), stride=(1, 1))
    )
    (obj_preds): ModuleList(
      (0): Conv2d(128, 1, kernel_size=(1, 1), stride=(1, 1))
      (1): Conv2d(128, 1, kernel_size=(1, 1), stride=(1, 1))
      (2): Conv2d(128, 1, kernel_size=(1, 1), stride=(1, 1))
    )
    (stems): ModuleList(
      (0): BaseConv(
        (conv): Conv2d(128, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)
        (bn): BatchNorm2d(128, eps=0.001, momentum=0.03, affine=True, track_running_stats=True)
        (act): SiLU(inplace=True)
      )
      (1): BaseConv(
        (conv): Conv2d(256, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)
        (bn): BatchNorm2d(128, eps=0.001, momentum=0.03, affine=True, track_running_stats=True)
        (act): SiLU(inplace=True)
      )
      (2): BaseConv(
        (conv): Conv2d(512, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)
        (bn): BatchNorm2d(128, eps=0.001, momentum=0.03, affine=True, track_running_stats=True)
        (act): SiLU(inplace=True)
      )
    )
    (l1_loss): L1Loss()
    (bcewithlog_loss): BCEWithLogitsLoss()
    (iou_loss): IOUloss()
  )
)
2024-02-05 23:08:17 | INFO     | yolox.core.trainer:203 - ---> start train epoch1
2024-02-05 23:08:22 | INFO     | yolox.core.trainer:261 - epoch: 1/300, iter: 10/250, mem: 2730Mb, iter_time: 0.523s, data_time: 0.001s, total_loss: 17.5, iou_loss: 4.7, l1_loss: 3.0, conf_loss: 8.8, cls_loss: 1.0, lr: 1.600e-07, size: 256, ETA: 10:54:05
2024-02-05 23:08:27 | INFO     | yolox.core.trainer:261 - epoch: 1/300, iter: 20/250, mem: 2730Mb, iter_time: 0.478s, data_time: 0.223s, total_loss: 13.0, iou_loss: 4.7, l1_loss: 2.3, conf_loss: 5.1, cls_loss: 1.0, lr: 6.400e-07, size: 96, ETA: 10:25:36
2024-02-05 23:08:37 | INFO     | yolox.core.trainer:261 - epoch: 1/300, iter: 30/250, mem: 4257Mb, iter_time: 0.950s, data_time: 0.001s, total_loss: 22.2, iou_loss: 4.7, l1_loss: 3.0, conf_loss: 13.5, cls_loss: 1.0, lr: 1.440e-06, size: 416, ETA: 13:32:40
2024-02-05 23:08:43 | INFO     | yolox.core.trainer:261 - epoch: 1/300, iter: 40/250, mem: 4259Mb, iter_time: 0.676s, data_time: 0.001s, total_loss: 21.0, iou_loss: 4.7, l1_loss: 3.0, conf_loss: 12.3, cls_loss: 1.0, lr: 2.560e-06, size: 416, ETA: 13:40:40
2024-02-05 23:08:45 | INFO     | yolox.core.trainer:261 - epoch: 1/300, iter: 50/250, mem: 4259Mb, iter_time: 0.210s, data_time: 0.001s, total_loss: 13.2, iou_loss: 4.8, l1_loss: 2.6, conf_loss: 5.0, cls_loss: 0.8, lr: 4.000e-06, size: 96, ETA: 11:48:55
2024-02-05 23:08:52 | INFO     | yolox.core.trainer:261 - epoch: 1/300, iter: 60/250, mem: 4259Mb, iter_time: 0.646s, data_time: 0.001s, total_loss: 18.1, iou_loss: 4.7, l1_loss: 2.6, conf_loss: 9.8, cls_loss: 1.0, lr: 5.760e-06, size: 320, ETA: 12:05:09
2024-02-05 23:08:59 | INFO     | yolox.core.trainer:261 - epoch: 1/300, iter: 70/250, mem: 4279Mb, iter_time: 0.714s, data_time: 0.027s, total_loss: 20.1, iou_loss: 4.7, l1_loss: 2.7, conf_loss: 11.7, cls_loss: 1.0, lr: 7.840e-06, size: 416, ETA: 12:28:52
2024-02-05 23:09:04 | INFO     | yolox.core.trainer:261 - epoch: 1/300, iter: 80/250, mem: 4279Mb, iter_time: 0.478s, data_time: 0.047s, total_loss: 14.9, iou_loss: 4.7, l1_loss: 2.8, conf_loss: 6.4, cls_loss: 1.1, lr: 1.024e-05, size: 224, ETA: 12:09:45
2024-02-05 23:09:06 | INFO     | yolox.core.trainer:261 - epoch: 1/300, iter: 90/250, mem: 4279Mb, iter_time: 0.184s, data_time: 0.001s, total_loss: 12.9, iou_loss: 4.7, l1_loss: 2.2, conf_loss: 5.1, cls_loss: 0.9, lr: 1.296e-05, size: 96, ETA: 11:14:07
2024-02-05 23:09:15 | INFO     | yolox.core.trainer:261 - epoch: 1/300, iter: 100/250, mem: 4279Mb, iter_time: 0.949s, data_time: 0.259s, total_loss: 20.1, iou_loss: 4.7, l1_loss: 2.7, conf_loss: 11.7, cls_loss: 1.1, lr: 1.600e-05, size: 352, ETA: 12:05:03
2024-02-05 23:09:18 | INFO     | yolox.core.trainer:261 - epoch: 1/300, iter: 110/250, mem: 4279Mb, iter_time: 0.248s, data_time: 0.001s, total_loss: 13.7, iou_loss: 4.7, l1_loss: 2.6, conf_loss: 5.4, cls_loss: 1.0, lr: 1.936e-05, size: 128, ETA: 11:27:11


http://www.kler.cn/a/230037.html

相关文章:

  • 去哪儿大数据面试题及参考答案
  • 如何选择最适合企业的ETL解决方案?
  • 【排版教程】Word、WPS 分节符(奇数页等) 自动变成 分节符(下一页) 解决办法
  • hive的存储格式
  • Python毕业设计选题:基于django+vue的期货交易模拟系统的设计与实现
  • 【PX4_Autopolite飞控源码】中飞控板初始化过程中的引脚IO控制(拉低/拉高)
  • T-Sql 也能更新修改查询JSON?
  • 【MATLAB】使用梯度提升树在回归预测任务中进行特征选择(深度学习的数据集处理)
  • mysql清空表数据后如何让自增ID仍从1开始
  • IDEA 配置和缓存目录 设置
  • Vue3——创建一个应用
  • 【知识图谱+大模型的紧耦合新范式】Think-on-Graph:解决大模型在医疗、法律、金融等垂直领域的幻觉
  • 第七届西湖论剑·中国杭州网络安全技能大赛 AI 回声海螺 WP
  • ETL是什么,有哪些ETL工具?就业前景如何?
  • Java设计模式-责任链模式
  • 【类与对象(中)】
  • Java开发IntelliJ IDEA2023
  • GitLag所有操作-汇总
  • vue 修饰器
  • Rust基础拾遗--看的不多只看一篇--基础
  • 09-错误处理
  • Vue-54、Vue技术vuex中四个map使用(mapState、mapGetters、mapActions、mapMutations)
  • 阿里云服务器centos_7_9_x64位,3台,搭建k8s集群
  • 幻兽帕鲁怎么样?好玩? Mac版的玩《幻兽帕鲁》也很简单,只需三个步骤
  • 计算机网络——新型网络架构:SDN/NFV
  • 【计算机二级考试C语言】C可变参数