堆排序-Python实现
简述
堆排序(Heap Sort)是一种基于比较的排序算法,它利用堆这种数据结构所设计的一种排序算法。堆排序是一种选择排序,它的最坏,最好,平均时间复杂度均为O(nlogn),它也是不稳定排序。
堆
堆排序中的堆有大顶堆
、小顶堆
两种。他们都是完全二叉树。
完全二叉树是指除了最后一层外,每一层都是完全填充的,并且最后一层的右边都是空的二叉树。大顶堆和小顶堆都是特殊的完全二叉树,它们的特点分别是每个节点的值都不小于(或不小于)其子节点的值,和每个节点的值都不大于(或不小于)其子节点的值。
将该堆按照排序放入列表
- 大顶堆:所有的父节点的值都比孩子节点大,叶子节点值最小。root 根节点是第一个节点值最大公式表示:arr[i] >= arr[2i+1]
&&
arr[i] >= arr[2i+2] - 小顶堆:和大顶堆相反,所有父节点值,都小于子节点值,root 根节点是 第一个节点值最小公式表示:arr[i] <= arr[2i+1]
&&
arr[i] <= arr[2i+2]
ok,了解了这些定义。接下来,我们来看看堆排序的基本思想及基本步骤。
堆排序基本思想及步骤
堆排序的基本思想是:将待排序序列构造成一个大顶堆,此时,整个序列的最大值就是堆顶的根节点。将其与末尾元素进行交换,此时末尾就为最大值。然后将剩余n-1个元素重新构造成一个堆,这样会得到n个元素的次小值。如此反复执行,便能得到一个有序序列了。
在堆的结构中,堆中的最小值(最大值)总是位于堆的根结点。在堆排序中主要分为三步:
(1)创建大顶堆(BuildMaxHeap):将待排序元素列中的所有元素进行排列,生成一个大顶堆;
(2)将堆顶元素与末尾元素进行交换,将最大元素“沉”到元素列末端;
(3)调整顶堆,使其满足大顶堆定义;
(4)重复(2)(3)步骤,直至元素列有序。
以大顶堆为例
构造大顶堆
-
如何调整
我们从最后一个非叶子节点处开始调整。最后一个非叶子节点是最后一个叶子节点的父节点。
若父节点的下标为 i ,那么左孩子节点下标为 i × 2 + 1,右孩子节点下标为 i × 2 + 2。
设元素列的长度为 N,因为下标从0开始,所以最后一个叶子节点的下标是 N - 1。
分两种情况:第一种是最后一个叶子节点是左孩子节点,那么 n - 1 = i × 2 + 1,即 i = n / 2 - 1
第二种情况是最后一个叶子节点是右孩子节点(此时 n 是奇数)那么 n - 1 = i × 2 + 2,即 i = ( n - 1 ) / 2 - 1 = n / 2 - 1(向下取整)
综上,最后一个非叶子节点的下标是 n / 2 - 1 -
构造大根堆
以升序排序序列 [20,50,20, 40, 70,10,80, 30,60]为例
它对应的二叉树结构如下:
在我们的例子中,最后一个非叶子节点的下标是 9 / 2 - 1 = 3,因此调整顺序为:3–>2 -->1 -->0。
- 从最后一个父节点开始,将父节点、他所有的子节点中的最大值交换到父节点。父节点:3
- 将倒数第二个父节点同理交换,父节点:2
- 继续调整父节点:1
- 最后是根节点:0
- 注意很重要:务必注意-承接第3步。
假设根节点值为:10, 当他和两个子节点70, 80。
父节点和两子节点中的大的(80)交换后位于父节点2:原来80的位置。
可是他还有子节点,且子节点中的值比根节点大,那就还需要以他为父节点构造一次,与子节点6 值为20交换一次。
同理在其他所有父节点的构造中都需要判断调整
忽略第五步。构造好的的大顶堆如下:
堆排序简略版
基本思路:将待排序序列构造成一个大顶堆,此时,整个序列的最大值就是堆顶的根节点。将其与末尾元素进行交换,此时末尾就为最大值。可称为有序区,然后将剩余n-1个元素重新构造成一个堆,估且称为堆区(未排序)。这样会得到n个元素的次小值。重复执行,有序区从:1—>n,堆区:n–>0,便能得到一个有序序列了。
每次将堆顶(根节点)最的的元素和堆尾列表最后一个元素交换,80 和40交换
即上面说的堆区(未排序):n–>0最大元素(根节点),和有序区从:1—>n,最后一个元素交换
按照上面原理继续排序,70, 30 交换。然后调整堆
堆顶元素60尾元素20交换后–>调整堆
最后结果
堆排序-python代码实现
现在排序这么一个序列:list_ = [4, 7, 0, 9, 1, 5, 3, 3, 2, 6]
"""
堆排序 heap_sort
4
/ \
7 0
/ \ / \
9 1 5 3
/ \ /
3 2 6
list_ = [4, 7, 0, 9, 1, 5, 3, 3, 2, 6]
"""
代码实现一
def swap(data, root, last):
data[root], data[last] = data[last], data[root]
#调整父节点 与孩子大小, 制作大顶堆
def adjust_heap(data, par_node, high):
new_par_node = par_node
j = 2*par_node +1 #取根节点的左孩子, 如果只有一个孩子 high就是左孩子,如果有两个孩子 high 就是右孩子
while j <= high: #如果 j = high 说明没有右孩子,high就是左孩子
if j < high and data[j] < data[j+1]: #如果这儿不判断 j < high 可能超出索引
# 一个根节点下,如果有两个孩子,将 j 指向值大的那个孩子
j += 1
if data[j] > data[new_par_node]: #如果子节点值大于父节点,就互相交换
data[new_par_node], data[j] = data[j], data[new_par_node]
new_par_node = j #将当前节点,作为父节点,查找他的子树
j = j * 2 + 1
else:
# 因为调整是从上到下,所以下面的所有子树肯定是排序好了的,
#如果调整的父节点依然比下面最大的子节点大,就直接打断循环,堆已经调整好了的
break
# 索引计算: 0 -->1 --->....
# 父节点 i 左子节点:2i +1 右子节点:2i +2 注意:当用长度表示最后一个叶子节点时 记得 -1
# 即 2i + 1 = length - 1 或者 2i + 2 = length - 1
# 2i+1 + 1 = length 或 2i+2 + 1 = length
# 2(i+1)=length 或 2(i+1)+1 = length
# 设j = i+1 则左子节点(偶数):2j = length 和 右子节点(基数):2j+1 = length
# 2j//2 = j == (2j+1)//2 这两个的整除是一样的,所以使用length//2 = j 然后 i + 1 = j
# i = j-1 = length//2 -1 #注意左子节点:2i+1 //2 =i 而右子节点:(2i+2)//2 = i+1
# 从第一个非叶子节点(即最后一个父节点)开始,即 list_.length//2 -1(len(list_)//2 - 1)
# 开始循环到 root 索引为:0 的第一个根节点, 将所有的根-叶子 调整好,成为一个 大顶堆
def heap_sort(lst):
"""
根据列表长度,找到最后一个非叶子节点,开始循化到 root 根节点,制作 大顶堆
:param lst: 将列表传入
:return:
"""
length = len(lst)
last = length -1 #最后一个元素的 索引
last_par_node = length//2 -1
while last_par_node >= 0:
adjust_heap(lst, last_par_node, length-1)
last_par_node -= 1 #每调整好一个节点,从后往前移动一个节点
# return lst
while last > 0:
#swap(lst, 0, last)
lst[0], lst[last] = lst[last],lst[0]
# 调整堆让 adjust 处理,最后已经排好序的数,就不处理了
adjust_heap(lst, 0, last-1)
last -= 1
return lst #将列表返回
if __name__ == '__main__':
list_ = [4, 7, 0, 9, 1, 5, 3, 3, 2, 6]
heap_sort(list_)
print(list_)
#最后结果为:
[0, 1, 2, 3, 3, 4, 5, 6, 7, 9]
代码实现二
import math
def heap_sort(a):
al = len(a)
def heapify(a, i):
left = 2 * i + 1
right = 2 * i + 2
largest = i
if left < al and a[left] > a[largest]:
largest = left
if right < al and a[right] > a[largest]:
largest = right
if largest != i:
a[i], a[largest] = a[largest], a[i]
heapify(a, largest)
# 建堆
for i in range(math.floor(len(a) / 2), -1, -1):
heapify(a, i)
# 不断调整堆:根与最后一个元素
for i in range(len(a) - 1, 0, -1):
a[0], a[i] = a[i], a[0]
al -= 1
heapify(a, 0)
return a
if __name__ == '__main__':
list_ = [4, 7, 0, 9, 1, 5, 3, 3, 2, 6]
heap_sort(list_)
print(list_)
#最后结果为:
[0, 1, 2, 3, 3, 4, 5, 6, 7, 9]