当前位置: 首页 > article >正文

Leetcode第383场周赛

在这里插入图片描述
在这里插入图片描述

Leetcode第383场周赛

本人水平有限,只做前3道。
一、边界上的蚂蚁

边界上有一只蚂蚁,它有时向 左 走,有时向 右 走。

给你一个 非零 整数数组 nums 。蚂蚁会按顺序读取 nums 中的元素,从第一个元素开始直到结束。每一步,蚂蚁会根据当前元素的值移动:

如果 nums[i] < 0 ,向 左 移动 -nums[i]单位。
如果 nums[i] > 0 ,向 右 移动 nums[i]单位。
返回蚂蚁 返回 到边界上的次数。

注意:

边界两侧有无限的空间。
只有在蚂蚁移动了 |nums[i]| 单位后才检查它是否位于边界上。换句话说,如果蚂蚁只是在移动过程中穿过了边界,则不会计算在内。

解题思路

找到数组累加和=0的次数

代码
class Solution {
    public int returnToBoundaryCount(int[] nums) {
        int rec = 0,cnt = 0;
        for(int num:nums){
            rec += num;
            if(rec==0){
                cnt++;
            }
        }
        return cnt;
    }
}
二、找出网格的区域平均强度

给你一个下标从 0 开始、大小为 m x n 的网格 image ,表示一个灰度图像,其中 image[i][j] 表示在范围 [0…255] 内的某个像素强度。另给你一个 非负 整数 threshold 。

如果 image[a][b] 和 image[c][d] 满足 |a - c| + |b - d| == 1 ,则称这两个像素是 相邻像素 。

区域 是一个 3 x 3 的子网格,且满足区域中任意两个 相邻 像素之间,像素强度的 绝对差 小于或等于 threshold 。

区域 内的所有像素都认为属于该区域,而一个像素 可以 属于 多个 区域。

你需要计算一个下标从 0 开始、大小为 m x n 的网格 result ,其中 result[i][j] 是 image[i][j] 所属区域的 平均 强度,向下取整 到最接近的整数。如果 image[i][j] 属于多个区域,result[i][j] 是这些区域的 “取整后的平均强度” 的 平均值,也 向下取整 到最接近的整数。如果 image[i][j] 不属于任何区域,则 result[i][j] 等于 image[i][j] 。

返回网格 result 。

在这里插入图片描述
在这里插入图片描述

解题思路

这道题考阅读理解。

  1. 相邻像素:如果两个像素在网格中水平或垂直相邻(即它们的位置之差的和为1),它们被认为是相邻像素。
  2. 区域定义:一个区域是一个 3x3 的子网格,其中任意两个相邻像素的强度之差的绝对值都不超过给定的阈值(threshold)。这意味着,在一个区域内,所有相邻像素的强度都相似。
  3. 区域的平均强度:计算一个区域内所有像素强度的平均值。如果一个像素属于多个区域,则需要计算这些区域的平均强度的平均值。在这个计算过程中,所有的平均值都需要向下取整到最接近的整数。
  4. result网格:对于image中的每个像素,result中的对应像素应该是该像素所属区域的平均强度。如果一个像素属于多个区域,则取这些区域的平均强度的平均值(都进行向下取整)如果一个像素不属于任何区域,则result中的对应像素的值等于image中的原始像素值。
    从本质上讲,这个任务是在对图像进行一种特定的平滑处理,其中“平滑”的程度由阈值threshold控制,只有当一个区域内的像素强度变化在threshold定义的范围内时,这些像素的强度才会被平均。

解题思路如下:

  1. 遍历所有3x3的子网格。
  2. 遍历网格中所有相邻像素(即左右相邻或上下相邻),如果存在差值大于threshold的情况,则遍历下一个子网格。
  3. 如果合法,计算子网格中的平均值avg,等于子网格中的像素值和/9。
  4. 更新子网格内的result[i][j],我们先将avg加到result[i][j]中,同时,我们还需要一个矩阵cnt[i][j]记录image[i][j]在几个子网格中。
  5. 如果cnt[i][j]=0,那么result[i][j]=avg。否则,result[i][j]=result[i][j]/cnt[i][j](每次result[i][j]+avg,cnt[i][j]+1)。
代码
class Solution {
    public int[][] resultGrid(int[][] image, int threshold) {
        int m = image.length;
        int n = image[0].length;
        int[][] result = new int[m][n];// 结果数组
        int[][] cnt = new int[m][n];// 存储image[i][j]在子网格中出现的次数
        for (int i = 2; i < m; i++) {
            next:
            for (int j = 2; j < n; j++) {
                // 检查左右相邻格子
                for (int x = i-2; x <= i; x++) {
                    if(Math.abs(image[x][j-2] - image[x][j-1]) > threshold || Math.abs(image[x][j-1] - image[x][j]) > threshold){
                        continue next;   
                    }
                }

                // 检查上下相邻格子
                for (int y = j-2; y <= j; y++) {
                    if(Math.abs(image[i-2][y] - image[i-1][y]) > threshold || Math.abs(image[i-1][y] - image[i][y]) > threshold){
                        continue next;
                    }
                }

                // 合法,计算3x3子网格的平均值
                int avg = 0;
                for (int x = i-2; x <= i; x++) {
                    for (int y = j-2; y <= j; y++) {
                        avg += image[x][y];
                    }
                }

                avg /= 9;

                // 更新3x3子网格内的result
                for (int x = i-2; x <= i; x++) {
                    for (int y = j-2; y <= j; y++) {
                        result[x][y] += avg;
                        cnt[x][y] ++;
                    }
                }
            }
        }

        for (int i = 0; i < m; i++) {
            for (int j = 0; j < n; j++) {
                if(cnt[i][j] == 0){
                    result[i][j] = image[i][j];
                }else{
                    result[i][j] /= cnt[i][j];
                }
            }
        }

        return result;
    }
}
三、将单词恢复初始状态所需的最短时间I

给你一个下标从 0 开始的字符串 word 和一个整数 k 。

在每一秒,你必须执行以下操作:

移除 word 的前 k 个字符。
在 word 的末尾添加 k 个任意字符。
注意 添加的字符不必和移除的字符相同。但是,必须在每一秒钟都执行 两种 操作。

返回将 word 恢复到其 初始 状态所需的 最短 时间(该时间必须大于零)。

示例 1:

输入:word = “abacaba”, k = 3
输出:2
解释:
第 1 秒,移除 word 的前缀 “aba”,并在末尾添加 “bac” 。因此,word 变为 “cababac”。
第 2 秒,移除 word 的前缀 “cab”,并在末尾添加 “aba” 。因此,word 变为 “abacaba” 并恢复到始状态。
可以证明,2 秒是 word 恢复到其初始状态所需的最短时间。
示例 2:

输入:word = “abacaba”, k = 4
输出:1
解释:
第 1 秒,移除 word 的前缀 “abac”,并在末尾添加 “caba” 。因此,word 变为 “abacaba” 并恢复到初始状态。
可以证明,1 秒是 word 恢复到其初始状态所需的最短时间。
示例 3:

输入:word = “abcbabcd”, k = 2
输出:4
解释:
每一秒,我们都移除 word 的前 2 个字符,并在 word 末尾添加相同的字符。
4 秒后,word 变为 “abcbabcd” 并恢复到初始状态。
可以证明,4 秒是 word 恢复到其初始状态所需的最短时间。

解题思路

在每次循环中,从 k 的位置开始提取字符串,直到字符串的末尾存储到cWord中,cWord表示原始word去除前k个字符后的结果。
然后,检查cWord是否可以做原始word的前缀。(即cWord与原始word中长度相等的前缀相同)
如果在任何时刻,cWord可以做原始word前缀,这意味着你可以通过在下一次操作中添加相应的字符来恢复 word 到其初始状态。因此,增加time计数器并退出循环。如果cWord不可以做原始word前缀,则增加time计数器并继续循环,如果同时发现cWord的长度小于k,则说明下一次操作后必定可以使word恢复到原始状态(因为等同于所有字符都进行替换,所以必定有一种可能使其恢复到原始状态),则增加time计数器并继续循环。

代码
class Solution {
    public int minimumTimeToInitialState(String word, int k) {
        int time = 0;
        String cWord = word;
        while (true) {
            cWord = cWord.substring(k);
            if(word.substring(0,cWord.length()).equals(cWord)){
                time++;
                break;
            }else{
                time++;
                if(cWord.length()<k){
                    time++;
                    break;
                }
            }
        }
        return time;
    }
}

http://www.kler.cn/a/231916.html

相关文章:

  • 使用 TensorFlow 实现 ZFNet 进行 MNIST 图像分类
  • 数据集的重要性:如何构建AIGC训练集
  • 性能高于Transformer模型1.7-2倍,彩云科技发布基于DCFormer架构通用大模型云锦天章
  • 【Chapter 3】Machine Learning Classification Case_Prediction of diabetes-XGBoost
  • STM32设计防丢防摔智能行李箱
  • Vue学习记录03
  • 26.云原生ArgoCD高级之ApplicationSet
  • Linux openKylin(开放麒麟)系统SSH服务安装配置与公网远程连接
  • ubuntu22.04安装部署02:禁用显卡更新
  • debian12 解决 github 访问难的问题
  • 反向迭代器
  • SQL Parser
  • JavaScript流程控制详解之循环结构(倒三角、九九乘法表)
  • C语言:矩阵中的最小元素
  • On the Spectral Bias of Neural Networks论文阅读
  • Docker-Learn(一)使用Dockerfile创建Docker镜像
  • Windows SDK(四)鼠标和键盘消息处理
  • 已解决:tpm2_createpriimay: command not found
  • 相机图像质量研究(7)常见问题总结:光学结构对成像的影响--镜片固化
  • pytorch入门第一天
  • 【Spring连载】使用Spring Data访问Redis(九)----Redis流 Streams
  • 打卡今天学习的命令 (linux
  • 深度学习本科课程 实验3 网络优化
  • Terraform实战(三)-在AWS上尝试Terraform的Vault Provider
  • Golang 并发 Cond条件变量
  • TS学习与实践