MATLAB实现随机森林回归算法
随机森林回归是一种基于集成学习的机器学习算法,它通过组合多个决策树来进行回归任务。随机森林的基本思想是通过构建多个决策树,并将它们的预测结果进行平均或投票来提高模型的准确性和鲁棒性。
以下是随机森林回归的主要特点和步骤:
-
决策树的构建: 随机森林由多个决策树组成。每个决策树都是通过对原始数据进行有放回的随机抽样(bootstrap抽样)来训练的。此外,在每次分裂节点时,算法随机选择一个特征子集进行分裂,以增加模型的多样性。
-
预测过程: 对于回归任务,随机森林中的每个决策树都会输出一个预测值。最终的随机森林预测结果是这些预测值的平均值。
-
超参数调优: 随机森林有一些重要的超参数,如树的数量、每棵树的最大深度、特征子集的大小等。通过交叉验证等方法,可以调整这些超参数以优化模型性能。
-
特征重要性: 随机森林可以提供每个特征对于模型预测的重要性程度。这对于理解模型和特征选择非常有帮助。
-
抗过拟合: 随机森林具有较好的抗过拟合能力,因为每个决策树都是在不同的数据子集上训练的,且通过随机选择特征子集来减少相关性。
In=ques2c(:,2:7); Out=ques2c(:,1);; %此处未进行归一化,切记,使用归一化的数据进行训练,后面要记得反归一化,且数据多处进行归一化,不可遗漏 nTree = 100;%树的个数 %训练模型 Factor = TreeBagger(nTree, In, Out,'Method','regression','OOBpredictorImportance','on','MinLeafSize',5);% %性能评估,k-fold交叉验证法 subplot(121) [Predict_label,Scores] = predict(Factor, In); plot(Out,Out,'LineWidth',3); hold on scatter(Out,Predict_label,'filled'); xlabel('Real temp') ylabel('Predict temp') hold off grid on subplot(122) plot(Factor.oobError,'LineWidth',2); xlabel('Number of grown trees') ylabel('Out-of-bag classification error') grid on %% view(Factor.Trees{1},'Mode','graph') %变量重要性直方图 weights=Factor.OOBPermutedVarDeltaError; %重要性降序 barh(weights) set(gca,'yticklabels',{'CO? emission','NOx emission','SO? emission','VOCs emission','CO? concentration','Population'}) xlabel('Weights') ylabel('Index') %误差变化图 figure plot(Factor.oobError,'LineWidth',2); xlabel('生长树数量','FontSize',30) ylabel('袋外错误率','FontSize',30) title('袋外错误率','FontSize',30) set(gca,'FontSize',16) set(gca,'LineWidth',2); grid on % 计算R方值 SSR = sum((Predict_label - mean(y_test)).^2); SST = sum((y_test - mean(y_test)).^2); R_squared = 1 - SSR/SST; % 打印R方值 disp(['R方值为: ', num2str(R_squared)]);