C++力扣题目494--目标和 474--一和零
494.目标和
力扣题目链接(opens new window)
难度:中等
给定一个非负整数数组,a1, a2, ..., an, 和一个目标数,S。现在你有两个符号 + 和 -。对于数组中的任意一个整数,你都可以从 + 或 -中选择一个符号添加在前面。
返回可以使最终数组和为目标数 S 的所有添加符号的方法数。
示例:
- 输入:nums: [1, 1, 1, 1, 1], S: 3
- 输出:5
解释:
- -1+1+1+1+1 = 3
- +1-1+1+1+1 = 3
- +1+1-1+1+1 = 3
- +1+1+1-1+1 = 3
- +1+1+1+1-1 = 3
一共有5种方法让最终目标和为3。
提示:
- 数组非空,且长度不会超过 20 。
- 初始的数组的和不会超过 1000 。
- 保证返回的最终结果能被 32 位整数存下。
#思路
如果对背包问题不都熟悉先看这两篇:
- 动态规划:关于01背包问题,你该了解这些!(opens new window)
- 动态规划:关于01背包问题,你该了解这些!(滚动数组)(opens new window)
如果跟着「代码随想录」一起学过回溯算法系列 (opens new window)的录友,看到这道题,应该有一种直觉,就是感觉好像回溯法可以爆搜出来。
事实确实如此,下面我也会给出相应的代码,只不过会超时。
这道题目咋眼一看和动态规划背包啥的也没啥关系。
本题要如何使表达式结果为target,
既然为target,那么就一定有 left组合 - right组合 = target。
left + right = sum,而sum是固定的。right = sum - left
公式来了, left - (sum - left) = target 推导出 left = (target + sum)/2 。
target是固定的,sum是固定的,left就可以求出来。
此时问题就是在集合nums中找出和为left的组合。
#回溯算法
在回溯算法系列中,一起学过这道题目回溯算法:39. 组合总和 (opens new window)的录友应该感觉很熟悉,这不就是组合总和问题么?
此时可以套组合总和的回溯法代码,几乎不用改动。
当然,也可以转变成序列区间选+ 或者 -,使用回溯法,那就是另一个解法。
我也把代码给出来吧,大家可以了解一下,回溯的解法,以下是本题转变为组合总和问题的回溯法代码:
class Solution {
private:
vector<vector<int>> result;
vector<int> path;
void backtracking(vector<int>& candidates, int target, int sum, int startIndex) {
if (sum == target) {
result.push_back(path);
}
// 如果 sum + candidates[i] > target 就终止遍历
for (int i = startIndex; i < candidates.size() && sum + candidates[i] <= target; i++) {
sum += candidates[i];
path.push_back(candidates[i]);
backtracking(candidates, target, sum, i + 1);
sum -= candidates[i];
path.pop_back();
}
}
public:
int findTargetSumWays(vector<int>& nums, int S) {
int sum = 0;
for (int i = 0; i < nums.size(); i++) sum += nums[i];
if (S > sum) return 0; // 此时没有方案
if ((S + sum) % 2) return 0; // 此时没有方案,两个int相加的时候要各位小心数值溢出的问题
int bagSize = (S + sum) / 2; // 转变为组合总和问题,bagsize就是要求的和
// 以下为回溯法代码
result.clear();
path.clear();
sort(nums.begin(), nums.end()); // 需要排序
backtracking(nums, bagSize, 0, 0);
return result.size();
}
};
当然以上代码超时了。
也可以使用记忆化回溯,但这里我就不在回溯上下功夫了,直接看动规吧
#动态规划
如何转化为01背包问题呢。
假设加法的总和为x,那么减法对应的总和就是sum - x。
所以我们要求的是 x - (sum - x) = target
x = (target + sum) / 2
此时问题就转化为,装满容量为x的背包,有几种方法。
这里的x,就是bagSize,也就是我们后面要求的背包容量。
大家看到(target + sum) / 2 应该担心计算的过程中向下取整有没有影响。
这么担心就对了,例如sum 是5,S是2的话其实就是无解的,所以:
(C++代码中,输入的S 就是题目描述的 target)
if ((S + sum) % 2 == 1) return 0; // 此时没有方案
同时如果 S的绝对值已经大于sum,那么也是没有方案的。
(C++代码中,输入的S 就是题目描述的 target)
if (abs(S) > sum) return 0; // 此时没有方案
再回归到01背包问题,为什么是01背包呢?
因为每个物品(题目中的1)只用一次!
这次和之前遇到的背包问题不一样了,之前都是求容量为j的背包,最多能装多少。
本题则是装满有几种方法。其实这就是一个组合问题了。
- 确定dp数组以及下标的含义
dp[j] 表示:填满j(包括j)这么大容积的包,有dp[j]种方法
其实也可以使用二维dp数组来求解本题,dp[i][j]:使用 下标为[0, i]的nums[i]能够凑满j(包括j)这么大容量的包,有dp[i][j]种方法。
下面我都是统一使用一维数组进行讲解, 二维降为一维(滚动数组),其实就是上一层拷贝下来,这个我在动态规划:关于01背包问题,你该了解这些!(滚动数组) (opens new window)也有介绍。
- 确定递推公式
有哪些来源可以推出dp[j]呢?
只要搞到nums[i],凑成dp[j]就有dp[j - nums[i]] 种方法。
例如:dp[j],j 为5,
- 已经有一个1(nums[i]) 的话,有 dp[4]种方法 凑成 容量为5的背包。
- 已经有一个2(nums[i]) 的话,有 dp[3]种方法 凑成 容量为5的背包。
- 已经有一个3(nums[i]) 的话,有 dp[2]中方法 凑成 容量为5的背包
- 已经有一个4(nums[i]) 的话,有 dp[1]中方法 凑成 容量为5的背包
- 已经有一个5 (nums[i])的话,有 dp[0]中方法 凑成 容量为5的背包
那么凑整dp[5]有多少方法呢,也就是把 所有的 dp[j - nums[i]] 累加起来。
所以求组合类问题的公式,都是类似这种:
dp[j] += dp[j - nums[i]]
这个公式在后面在讲解背包解决排列组合问题的时候还会用到!
- dp数组如何初始化
从递推公式可以看出,在初始化的时候dp[0] 一定要初始化为1,因为dp[0]是在公式中一切递推结果的起源,如果dp[0]是0的话,递推结果将都是0。
这里有录友可能认为从dp数组定义来说 dp[0] 应该是0,也有录友认为dp[0]应该是1。
其实不要硬去解释它的含义,咱就把 dp[0]的情况带入本题看看应该等于多少。
如果数组[0] ,target = 0,那么 bagSize = (target + sum) / 2 = 0。 dp[0]也应该是1, 也就是说给数组里的元素 0 前面无论放加法还是减法,都是 1 种方法。
所以本题我们应该初始化 dp[0] 为 1。
可能有同学想了,那 如果是 数组[0,0,0,0,0] target = 0 呢。
其实 此时最终的dp[0] = 32,也就是这五个零 子集的所有组合情况,但此dp[0]非彼dp[0],dp[0]能算出32,其基础是因为dp[0] = 1 累加起来的。
dp[j]其他下标对应的数值也应该初始化为0,从递推公式也可以看出,dp[j]要保证是0的初始值,才能正确的由dp[j - nums[i]]推导出来。
- 确定遍历顺序
在动态规划:关于01背包问题,你该了解这些!(滚动数组) (opens new window)中,我们讲过对于01背包问题一维dp的遍历,nums放在外循环,target在内循环,且内循环倒序。
- 举例推导dp数组
输入:nums: [1, 1, 1, 1, 1], S: 3
bagSize = (S + sum) / 2 = (3 + 5) / 2 = 4
dp数组状态变化如下:
C++代码如下:
class Solution {
public:
int findTargetSumWays(vector<int>& nums, int S) {
int sum = 0;
for (int i = 0; i < nums.size(); i++) sum += nums[i];
if (abs(S) > sum) return 0; // 此时没有方案
if ((S + sum) % 2 == 1) return 0; // 此时没有方案
int bagSize = (S + sum) / 2;
vector<int> dp(bagSize + 1, 0);
dp[0] = 1;
for (int i = 0; i < nums.size(); i++) {
for (int j = bagSize; j >= nums[i]; j--) {
dp[j] += dp[j - nums[i]];
}
}
return dp[bagSize];
}
};
- 时间复杂度:O(n × m),n为正数个数,m为背包容量
- 空间复杂度:O(m),m为背包容量
#总结
此时 大家应该不禁想起,我们之前讲过的回溯算法:39. 组合总和 (opens new window)是不是应该也可以用dp来做啊?
是的,如果仅仅是求个数的话,就可以用dp,但回溯算法:39. 组合总和 (opens new window)要求的是把所有组合列出来,还是要使用回溯法爆搜的。
本题还是有点难度,大家也可以记住,在求装满背包有几种方法的情况下,递推公式一般为:
dp[j] += dp[j - nums[i]];
后面我们在讲解完全背包的时候,还会用到这个递推公式
474.一和零
力扣题目链接(opens new window)
给你一个二进制字符串数组 strs 和两个整数 m 和 n 。
请你找出并返回 strs 的最大子集的大小,该子集中 最多 有 m 个 0 和 n 个 1 。
如果 x 的所有元素也是 y 的元素,集合 x 是集合 y 的 子集 。
示例 1:
-
输入:strs = ["10", "0001", "111001", "1", "0"], m = 5, n = 3
-
输出:4
-
解释:最多有 5 个 0 和 3 个 1 的最大子集是 {"10","0001","1","0"} ,因此答案是 4 。 其他满足题意但较小的子集包括 {"0001","1"} 和 {"10","1","0"} 。{"111001"} 不满足题意,因为它含 4 个 1 ,大于 n 的值 3 。
示例 2:
- 输入:strs = ["10", "0", "1"], m = 1, n = 1
- 输出:2
- 解释:最大的子集是 {"0", "1"} ,所以答案是 2 。
提示:
- 1 <= strs.length <= 600
- 1 <= strs[i].length <= 100
- strs[i] 仅由 '0' 和 '1' 组成
- 1 <= m, n <= 100
#思路
如果对背包问题不都熟悉先看这两篇:
- 动态规划:关于01背包问题,你该了解这些!(opens new window)
- 动态规划:关于01背包问题,你该了解这些!(滚动数组)(opens new window)
这道题目,还是比较难的,也有点像程序员自己给自己出个脑筋急转弯,程序员何苦为难程序员呢。
来说题,本题不少同学会认为是多重背包,一些题解也是这么写的。
其实本题并不是多重背包,再来看一下这个图,捋清几种背包的关系
多重背包是每个物品,数量不同的情况。
本题中strs 数组里的元素就是物品,每个物品都是一个!
而m 和 n相当于是一个背包,两个维度的背包。
理解成多重背包的同学主要是把m和n混淆为物品了,感觉这是不同数量的物品,所以以为是多重背包。
但本题其实是01背包问题!
只不过这个背包有两个维度,一个是m 一个是n,而不同长度的字符串就是不同大小的待装物品。
开始动规五部曲:
- 确定dp数组(dp table)以及下标的含义
dp[i][j]:最多有i个0和j个1的strs的最大子集的大小为dp[i][j]。
- 确定递推公式
dp[i][j] 可以由前一个strs里的字符串推导出来,strs里的字符串有zeroNum个0,oneNum个1。
dp[i][j] 就可以是 dp[i - zeroNum][j - oneNum] + 1。
然后我们在遍历的过程中,取dp[i][j]的最大值。
所以递推公式:dp[i][j] = max(dp[i][j], dp[i - zeroNum][j - oneNum] + 1);
此时大家可以回想一下01背包的递推公式:dp[j] = max(dp[j], dp[j - weight[i]] + value[i]);
对比一下就会发现,字符串的zeroNum和oneNum相当于物品的重量(weight[i]),字符串本身的个数相当于物品的价值(value[i])。
这就是一个典型的01背包! 只不过物品的重量有了两个维度而已。
- dp数组如何初始化
在动态规划:关于01背包问题,你该了解这些!(滚动数组) (opens new window)中已经讲解了,01背包的dp数组初始化为0就可以。
因为物品价值不会是负数,初始为0,保证递推的时候dp[i][j]不会被初始值覆盖。
- 确定遍历顺序
在动态规划:关于01背包问题,你该了解这些!(滚动数组) (opens new window)中,我们讲到了01背包为什么一定是外层for循环遍历物品,内层for循环遍历背包容量且从后向前遍历!
那么本题也是,物品就是strs里的字符串,背包容量就是题目描述中的m和n。
代码如下:
for (string str : strs) { // 遍历物品
int oneNum = 0, zeroNum = 0;
for (char c : str) {
if (c == '0') zeroNum++;
else oneNum++;
}
for (int i = m; i >= zeroNum; i--) { // 遍历背包容量且从后向前遍历!
for (int j = n; j >= oneNum; j--) {
dp[i][j] = max(dp[i][j], dp[i - zeroNum][j - oneNum] + 1);
}
}
}
有同学可能想,那个遍历背包容量的两层for循环先后循序有没有什么讲究?
没讲究,都是物品重量的一个维度,先遍历哪个都行!
- 举例推导dp数组
以输入:["10","0001","111001","1","0"],m = 3,n = 3为例
最后dp数组的状态如下所示:
以上动规五部曲分析完毕,C++代码如下:
class Solution {
public:
int findMaxForm(vector<string>& strs, int m, int n) {
vector<vector<int>> dp(m + 1, vector<int> (n + 1, 0)); // 默认初始化0
for (string str : strs) { // 遍历物品
int oneNum = 0, zeroNum = 0;
for (char c : str) {
if (c == '0') zeroNum++;
else oneNum++;
}
for (int i = m; i >= zeroNum; i--) { // 遍历背包容量且从后向前遍历!
for (int j = n; j >= oneNum; j--) {
dp[i][j] = max(dp[i][j], dp[i - zeroNum][j - oneNum] + 1);
}
}
}
return dp[m][n];
}
};
- 时间复杂度: O(kmn),k 为strs的长度
- 空间复杂度: O(mn)
#总结
不少同学刷过这道题,可能没有总结这究竟是什么背包。
此时我们讲解了0-1背包的多种应用,
- 纯 0 - 1 背包 (opens new window)是求 给定背包容量 装满背包 的最大价值是多少。
- 416. 分割等和子集 (opens new window)是求 给定背包容量,能不能装满这个背包。
- 1049. 最后一块石头的重量 II (opens new window)是求 给定背包容量,尽可能装,最多能装多少
- 494. 目标和 (opens new window)是求 给定背包容量,装满背包有多少种方法。
- 本题是求 给定背包容量,装满背包最多有多少个物品。
所以在代码随想录中所列举的题目,都是 0-1背包不同维度上的应用,大家可以细心体会!