CNN应用Keras Tuner寻找最佳Hidden Layers层数和神经元数量
介绍:
Keras Tuner是一种用于优化Keras模型超参数的开源Python库。它允许您通过自动化搜索算法来寻找最佳的超参数组合,以提高模型的性能。Keras Tuner提供了一系列内置的超参数搜索算法,如随机搜索、网格搜索、贝叶斯优化等。它还支持自定义搜索空间和搜索算法。通过使用Keras Tuner,您可以更轻松地优化模型的性能,节省调参的时间和精力。
数据:
from tensorflow.keras.datasets import fashion_mnist
(x_train, y_train), (x_test, y_test) = fashion_mnist.load_data()
'''
Label Description
0 T-shirt/top
1 Trouser
2 Pullover
3 Dress
4 Coat
5 Sandal
6 Shirt
7 Sneaker
8 Bag
9 Ankle boot
'''
import matplotlib.pyplot as plt
%matplotlib inline
print(y_test[0])
plt.imshow(x_test[0], cmap="gray")
#each having 1 channel (grayscale, it would have been 3 in the case of color, 1 each for Red, Green and Blue)
建模:
x_train = x_train.reshape(-1, 28, 28, 1)
x_test = x_test.reshape(-1, 28, 28, 1)
from tensorflow import keras
from tensorflow.keras.layers import Conv2D, MaxPooling2D, Dense, Flatten, Activation
import os
os.environ["KMP_DUPLICATE_LIB_OK"]="TRUE"
model = keras.models.Sequential()
model.add(Conv2D(32, (3, 3), input_shape=x_train.shape[1:]))
model.add(Activation('relu'))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Conv2D(32, (3, 3)))
model.add(Activation('relu'))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Flatten()) # this converts our 3D feature maps to 1D feature vectors
model.add(Dense(10))
model.add(Activation("softmax"))
model.compile(optimizer="adam",
loss="sparse_categorical_crossentropy",
metrics=["accuracy"])
model.fit(x_train, y_train, batch_size=64, epochs=1, validation_data = (x_test, y_test))
Keras Tuner:
from kerastuner.tuners import RandomSearch
from kerastuner.engine.hyperparameters import HyperParameters
def build_model(hp): # random search passes this hyperparameter() object
model = keras.models.Sequential()
model.add(Conv2D(hp.Int('input_units',
min_value=32,
max_value=256,
step=32), (3, 3), input_shape=x_train.shape[1:]))
model.add(Activation('relu'))
model.add(MaxPooling2D(pool_size=(2, 2)))
for i in range(hp.Int('n_layers', 1, 4)): # adding variation of layers.
model.add(Conv2D(hp.Int(f'conv_{i}_units',
min_value=32,
max_value=256,
step=32), (3, 3)))
model.add(Activation('relu'))
model.add(Flatten())
model.add(Dense(10))
model.add(Activation("softmax"))
model.compile(optimizer="adam",
loss="sparse_categorical_crossentropy",
metrics=["accuracy"])
return model
tuner = RandomSearch(
build_model,
objective='val_accuracy',
max_trials=1, # how many model variations to test?
executions_per_trial=1, # how many trials per variation? (same model could perform differently)
directory='Lesson56',
project_name='Optimise')
tuner.search(x=x_train,
y=y_train,
verbose=1, # just slapping this here bc jupyter notebook. The console out was getting messy.
epochs=1,
batch_size=64,
#callbacks=[tensorboard], # if you have callbacks like tensorboard, they go here.
validation_data=(x_test, y_test))
tuner.results_summary()