当前位置: 首页 > article >正文

OpenCV基础

OpenCV简介

OpenCV是一个功能强大的开源计算机视觉和机器学习软件库,它在图像处理和视频分析领域得到了广泛应用。OpenCV最初由英特尔公司于1999年发起并支持,后来由Willow Garage和Itseez(现在是Intel的一部分)维护。它是为了推动机器视觉领域的实时应用而开发的。OpenCV提供了丰富的算法,包括但不限于图像处理、物体和特征检测、物体识别、3D重建等。这些算法经过优化,可以在多种硬件平台上高效运行。OpenCV被广泛应用于面部识别、物体识别、运动跟踪、机器人视觉以及许多其他的计算机视觉应用中。

OpenCV的优势:

  • OpenCV基于C++实现,同时提供python, Ruby, Matlab等语言的接口。OpenCV-Python是OpenCV的Python API,结合了OpenCV C++ API和Python语言的最佳特性。 
  • 可以在不同的系统平台上使用。

 OpenCV-Python是一个Python绑定库,解决计算机视觉问题。

OpenCV-Python继承了OpenCV的多平台、轻量级和高效的特点,为Python开发者提供了丰富的计算机视觉功能。以下是OpenCV-Python的一些详细介绍:

  1. 接口封装:OpenCV-Python是OpenCV库C++实现的Python包装器。这意味着OpenCV-Python是对C++版本的OpenCV进行了Python风格的封装,使得Python开发者能够轻松地调用OpenCV的功能。
  2. 快速原型设计:OpenCV-Python非常适合用于计算机视觉问题的快速原型设计。它的设计使得开发者可以迅速实现想法并测试算法。
  3. 模块组成:OpenCV-Python包含了多个模块,每个模块都有其特定的应用场景。了解这些模块的功能和用途对于有效使用OpenCV-Python至关重要。
  4. 学习资源:为了掌握OpenCV-Python,官方提供了丰富的学习资源,包括官方网站、手册和入门教程。这些资料是学习和解决问题的重要参考。
  5. 安装与测试:在开始使用OpenCV-Python之前,需要确保已经正确安装了相关库,并且通过查询版本信息来验证安装是否成功。

图像的基础操作 

 读取图像

cv.imread()

参数:

  • 要读取的图像

  • 读取方式的标志

  • cv.IMREAD*COLOR:以彩色模式加载图像,任何图像的透明度都将被忽略。这是默认参数。

  • cv.IMREAD*GRAYSCALE:以灰度模式加载图像

  • cv.IMREAD_UNCHANGED:包括alpha通道的加载图像模式。

import numpy as np
import cv2 as cv

img = cv.imread('QQ.jpg',0)

显示图像

cv.imshow()

  • 显示图像的窗口名称,以字符串类型表示
  • 要加载的图像

保存图像

cv.imwrite() 

  • 文件名,保存在哪里
  • 保存的图像

cv.imwrite('messigray.png',img)

 读取一张图片,将其转换为灰度图像,并显示出来:

import numpy as np
import cv2 as cv
import matplotlib.pyplot as plt

img = cv.imread('messi5.jpg',0)


cv.imshow('image',img)

plt.imshow(img[:,:,::-1])
plt.title('匹配结果'), plt.xticks([]), plt.yticks([])
plt.show()
k = cv.waitKey(0)

cv.imwrite('messigray.png',img)

绘制几何图形

绘制直线

cv.line(img,start,end,color,thickness) 

  • img:要绘制直线的图像
  • Start,end: 直线的起点和终点
  • color: 线条的颜色
  • Thickness: 线条宽度

绘制圆形

cv.circle(img,centerpoint, r, color, thickness) 

  • img:要绘制圆形的图像
  • Centerpoint, r: 圆心和半径
  • color: 线条的颜色
  • Thickness: 线条宽度,为-1时生成闭合图案并填充颜色

绘制矩形

cv.rectangle(img,leftupper,rightdown,color,thickness) 

  • img:要绘制的矩形图像
  • Leftupper, rightdown: 矩形的左上角和右下角坐标
  • color: 线条的颜色
  • Thickness: 线条宽度

 向图像中添加文字

cv.putText(img,text,station, font, fontsize,color,thickness,cv.LINE_AA)

实战: 

import numpy as np
import cv2 as cv
import matplotlib.pyplot as plt

img = np.zeros((512,512,3), np.uint8)

cv.line(img,(0,0),(511,511),(255,0,0),5)
cv.rectangle(img,(384,0),(510,128),(0,255,0),3)
cv.circle(img,(447,63), 63, (0,0,255), -1)
font = cv.FONT_HERSHEY_SIMPLEX
cv.putText(img,'OpenCV',(10,500), font, 4,(255,255,255),2,cv.LINE_AA)

plt.imshow(img[:,:,::-1])
plt.title('匹配'), plt.xticks([]), plt.yticks([])
plt.show()

 几何变换

图像缩放

cv2.resize(src,dsize,fx=0,fy=0,interpolation=cv2.INTER_LINEAR) 

  • src : 输入图像

  • dsize: 绝对尺寸,直接指定调整后图像的大小

  • fx,fy: 相对尺寸,将dsize设置为None,然后将fx和fy设置为比例因子即可

  • interpolation:插值方法

import cv2 as cv
#  读取图片
img1 = cv.imread("dog.jpeg")

rows,cols = img1.shape[:2]
res = cv.resize(img1,(2*cols,2*rows),interpolation=cv.INTER_CUBIC)


res1 = cv.resize(img1,None,fx=0.5,fy=0.5)


cv.imshow("orignal",img1)
cv.imshow("enlarge",res)
cv.imshow("shrink)",res1)
cv.waitKey(0)


fig,axes=plt.subplots(nrows=1,ncols=3,figsize=(10,8),dpi=100)
axes[0].imshow(res[:,:,::-1])
axes[0].set_title("尺度)")
axes[1].imshow(img1[:,:,::-1])
axes[1].set_title("原图")
axes[2].imshow(res1[:,:,::-1])
axes[2].set_title("尺度")
plt.show()

 图像平移

cv.warpAffine(img,M,dsize)

  • img: 输入图像

  • M: 2∗∗3移动矩阵

 图像旋转

cv2.getRotationMatrix2D(center, angle, scale)

  • center:旋转中心
  • angle:旋转角度
  • scale:缩放比例
import numpy as np
import cv2 as cv
import matplotlib.pyplot as plt

img = cv.imread("image.jpg")

#  图像旋转
rows,cols = img.shape[:2]

M = cv.getRotationMatrix2D((cols/2,rows/2),90,1)
# 旋转变换
dst = cv.warpAffine(img,M,(cols,rows))


fig,axes=plt.subplots(nrows=1,ncols=2,dpi=100)
axes[0].imshow(img1[:,:,::-1])
axes[0].set_title("原图")
axes[1].imshow(dst[:,:,::-1])
axes[1].set_title("旋转后")
plt.show()

仿射变换

仿射变换是线性变换与平移的组合,可以保持直线和平行线的性质。它将矩形映射为平行四边形,即变换后各边仍然平行。

图像的仿射变换涉及到图像的形状位置角度的变化,是深度学习预处理中常到的功能,仿射变换主要是对图像的缩放,旋转,翻转和平移等操作的组合。

import numpy as np
import cv2 as cv
import matplotlib.pyplot as plt

img = cv.imread("image.jpg")

rows,cols = img.shape[:2]

pts1 = np.float32([[50,50],[200,50],[50,200]])
pts2 = np.float32([[100,100],[200,50],[100,250]])
M = cv.getAffineTransform(pts1,pts2)

dst = cv.warpAffine(img,M,(cols,rows))


fig,axes=plt.subplots(nrows=1,ncols=2,figsize=(10,8),dpi=100)
axes[0].imshow(img[:,:,::-1])
axes[0].set_title("原图")
axes[1].imshow(dst[:,:,::-1])
axes[1].set_title("仿射后")
plt.show()

 透射变换

透视变换是一种中心投影的射影变换,它可以将矩形映射为任意不规则四边形,因此透视变换的自由度更高。透视变换适用于需要模拟三维空间中视角变化的场合,如在计算机视觉中的相机校准、三维重建等,利用透视中心、像点、目标点三点共线的条件,按透视旋转定律使透视面透视轴旋转某一角度,破坏原有的投影光线束,仍能保持承影面上投影几何图形不变的变换。

import numpy as np
import cv2 as cv
import matplotlib.pyplot as plt

img = cv.imread("image.jpg")

rows,cols = img.shape[:2]
# 2.1 创建变换矩阵
pts1 = np.float32([[56,65],[368,52],[28,387],[389,390]])
pts2 = np.float32([[100,145],[300,100],[80,290],[310,300]])

T = cv.getPerspectiveTransform(pts1,pts2)

dst = cv.warpPerspective(img,T,(cols,rows))


fig,axes=plt.subplots(nrows=1,ncols=2,figsize=(10,8),dpi=100)
axes[0].imshow(img[:,:,::-1])
axes[0].set_title("原图")
axes[1].imshow(dst[:,:,::-1])
axes[1].set_title("透射")
plt.show()

 类似的还有OpenCV处理平滑方法、边缘检测、视频读写等操作和API,后期会更新更多OpenCV相关操作~


http://www.kler.cn/a/234404.html

相关文章:

  • 开放词汇检测新晋SOTA:地瓜机器人开源DOSOD实时检测算法
  • 爬虫学习记录
  • 【Leetcode 热题 100】20. 有效的括号
  • xxl-job回调执行器,发生NPE空指针异常
  • 【网络安全 | 漏洞挖掘】通过监控调试模式实现价值$15k的RCE
  • 【实用技能】如何使用 .NET C# 中的 Azure Key Vault 中的 PFX 证书对 PDF 文档进行签名
  • 每日OJ题_位运算③_力扣面试题 01.01. 判定字符是否唯一
  • java实战:销售订单30分钟未支付自动取消
  • JDK新特性
  • 【MySQL】MySQL表的增删改查(进阶)
  • 计算机网络基本知识(二)
  • Blazor SSR/WASM IDS/OIDC 单点登录授权实例5 - Winform 端授权
  • Cetnos7之修改open files大小引发的故障及处理方式
  • java中使用Lambda表达式实现参数化方法
  • 【操作系统】Ubuntu Swap内存扩容
  • iOS平台如何实现RTSP|RTMP播放端录像?
  • js基础(2)
  • QT+OSG/osgEarth编译之八十三:osgdb_ogr+Qt编译(一套代码、一套框架,跨平台编译,版本:OSG-3.6.5插件库osgdb_ogr)
  • Acwing154滑动窗口
  • Windows10安装PCL1.14.0及点云配准
  • MongoDB聚合:$shardedDataDistribution
  • OOD分类项目训练
  • kyuubi 接入starrocks | doris
  • Vue3中Setup概述和使用(三)
  • maven插件maven-jar-plugin构建jar文件详细使用
  • 一、西瓜书——绪论