当前位置: 首页 > article >正文

[NCNN学习笔记]-1

1、前言

本次继续学习NCNN,希望能够坚持,往期学习NCNN的链接如下。

[NCNN学习笔记]-0

2、学习内容

2.1、batchnorm_arm.cpp

这个章节学习NCNN中batchnorm在NEON上的实现。batchnorm的学习可参考链接:https://zhuanlan.zhihu.com/p/93643523

在NCNN中batchnorm的预处理为ncnn-master\src\layer\batchnorm.cpp

int BatchNorm::load_model(const ModelBin& mb)
{
    slope_data = mb.load(channels, 1);
    if (slope_data.empty())
        return -100;

    mean_data = mb.load(channels, 1);
    if (mean_data.empty())
        return -100;

    var_data = mb.load(channels, 1);
    if (var_data.empty())
        return -100;

    bias_data = mb.load(channels, 1);
    if (bias_data.empty())
        return -100;

    a_data.create(channels);
    if (a_data.empty())
        return -100;
    b_data.create(channels);
    if (b_data.empty())
        return -100;
    
    // 通过https://zhuanlan.zhihu.com/p/93643523中的公式,可以很推算出下面的过程
    for (int i = 0; i < channels; i++)
    {
        float sqrt_var = sqrtf(var_data[i] + eps);
        if (sqrt_var == 0.f)
            sqrt_var = 0.0001f; // sanitize divide by zero
        a_data[i] = bias_data[i] - slope_data[i] * mean_data[i] / sqrt_var;
        b_data[i] = slope_data[i] / sqrt_var;
    }
    return 0;
}

通过上面的代码,明白了a_data和b_data的作用,下面就正式开始学习在数据处理过程中的batchnorm吧

int BatchNorm_arm::forward_inplace(Mat& bottom_top_blob, const Option& opt) const
{
    int elembits = bottom_top_blob.elembits();
    int dims = bottom_top_blob.dims;         // 数据维度,最多为4
    int elempack = bottom_top_blob.elempack; // 每个数据可被分为多少组   例如float32x4_t可被分为4组

    if (elempack == 4)    // float32x4_t、int32x4_t、float16x4_t
    {
        // 对一行进行batchnorm
        if (dims == 1 )
        {
            int w = bottom_top_blob.w; 
            #pragma omp parallel for num_threads(opt.num_threads)
            for (int i = 0; i < w; i++)
            {
                float* ptr = (float*)bottom_top_blob + i * 4;   // 每间隔4个数据取一次地址

                float32x4_t _a = vld1q_f32((const float*)a_data + i * 4); 
                float32x4_t _b = vld1q_f32((const float*)b_data + i * 4);

                float32x4_t _p = vld1q_f32(ptr);
                _p = vmlaq_f32(_a, _p, _b);   // _a + _p.*b     y = a_data + b_data * x
                vst1q_f32(ptr, _p);
            }
        }
		 // 对每一行batchnorm
        if (dims == 2)
        {
            int w = bottom_top_blob.w;
            int h = bottom_top_blob.h;

            #pragma omp parallel for num_threads(opt.num_threads)
            for (int i = 0; i < h; i++)
            {
                float32x4_t _a = vld1q_f32((const float*)a_data + i * 4);
                float32x4_t _b = vld1q_f32((const float*)b_data + i * 4);
                float* ptr = bottom_top_blob.row(i);
                for (int j = 0; j < w; j++)  
                {
                    float32x4_t _p = vld1q_f32(ptr);
                    _p = vmlaq_f32(_a, _p, _b);
                    vst1q_f32(ptr, _p);

                    ptr += 4;
                }
            }
        }
		// 针对channel进行batchnorm
        if (dims == 3 || dims == 4)
        {
            int w = bottom_top_blob.w;
            int h = bottom_top_blob.h;
            int d = bottom_top_blob.d;
            int c = bottom_top_blob.c;
            int size = w * h * d;

            #pragma omp parallel for num_threads(opt.num_threads)
            for (int q = 0; q < c; q++)
            {
                float32x4_t _a = vld1q_f32((const float*)a_data + q * 4);
                float32x4_t _b = vld1q_f32((const float*)b_data + q * 4);

                float* ptr = bottom_top_blob.channel(q);

                for (int i = 0; i < size; i++)
                {
                    float32x4_t _p = vld1q_f32(ptr);
                    _p = vmlaq_f32(_a, _p, _b);
                    vst1q_f32(ptr, _p);

                    ptr += 4;
                }
            }
        }

        return 0;
    }
    return 0;
}

2.2、bias_arm.cpp

这个章节学习ncnn中的的bias计算

int Bias_arm::forward_inplace(Mat& bottom_top_blob, const Option& opt) const
{
    int w = bottom_top_blob.w;
    int h = bottom_top_blob.h;
    int d = bottom_top_blob.d;
    int channels = bottom_top_blob.c;
    int size = w * h * d;
    const float* bias_ptr = bias_data;
    #pragma omp parallel for num_threads(opt.num_threads)
    for (int q = 0; q < channels; q++)
    {
        float* ptr = bottom_top_blob.channel(q);  // 第q个channel的数据
        float bias = bias_ptr[q];
        int nn = size >> 2; // 处理4的整数倍的数据
        int remain = size - (nn << 2);     // 剩余处理向量
        float32x4_t _bias = vdupq_n_f32(bias);
        for (; nn > 0; nn--)
        {
            float32x4_t _p = vld1q_f32(ptr);
            float32x4_t _outp = vaddq_f32(_p, _bias);  // x + bias
            vst1q_f32(ptr, _outp);   
            ptr += 4;
        }
        // 剩余向量使用c语言计算
        for (; remain > 0; remain--)
        {
            *ptr = *ptr + bias;
            ptr++;
        }
    }
    return 0;
}
3、总结

本次学习了NCNN中的batchnorm和bias操作,后续准备学习NCNN时不局限于学习NCNN中的NEON实现,还会关注其他的内容!


http://www.kler.cn/a/271906.html

相关文章:

  • 使用 Babylon.js 开发时如何通过 CSS 实现 UI 自适应
  • “““【运用 R 语言里的“predict”函数针对 Cox 模型展开新数据的预测以及推理。】“““
  • 探秘差分数组:算法星河中闪耀的区间掌控之星
  • 腾讯 Hunyuan3D-2: 高分辨率3D 资产生成
  • el-dialog内容大于高度时可滑动
  • LINUX下设置分离状态(Detached State)和未设置分离状态的主要区别在于线程资源的管理方式和线程的生命周期。以下是两种状态的对比:
  • 手机网络连接性能API接口:查询手机网络连接性能状态
  • 后端程序员入门react笔记(八)-redux的使用和项目搭建
  • 阿里云免费证书改为3个月,应对方法很简单
  • Jmeter——循环控制器中实现Counter计数器的次数重置
  • windows 免密码ssh登录linux;linux免密码ssh登录其他linux
  • 在根据卷积核大小计算padding时要遵循什么原则
  • MySQL语法分类 DQL(3)排序查询
  • ARM 汇编指令:(六) B 跳转指令
  • Java12~14 switch语法
  • QT文件的读取与插入
  • 【Linux】进程与可执行程序的关系fork创建子进程写实拷贝的理解
  • 金枪鱼群优化算法TSO优化BiLSTM-ATTENTION实现风力发电功率预测(matlab)
  • 蓝桥杯--平均
  • [漏洞分析]Fortinet FortiNAC CVE-2022-39952简析
  • JavaScript BOM 的概念(浏览器对象模型)
  • 栈和队列(Java实现)
  • [Python初阶]2255.统计是给定字符串前缀的字符串数目
  • 关于前端打包加部署
  • python二级备考(2)-简单应用题
  • 九种背包问题(C++)