当前位置: 首页 > article >正文

[数据结构 C++] AVL树的模拟实现

在这里插入图片描述

文章目录

  • 1、AVL树
    • 1.1 AVL树的概念
  • 2、AVL树节点的定义
  • 3、AVL树的插入和旋转
    • 3.1 左单旋
      • 左旋代码实现
    • 3.2 右单旋
      • 右旋代码实现
    • 3.3 右左双旋
      • 右左双旋的代码实现
    • 3.4 左右双旋
      • 左右双旋的代码实现
    • 3.5 insert接口实现
  • 4、判断是否为AVL树
    • 判断AVL树的代码实现
  • 5、AVL树的性能

问题引入:
在上一篇文章中,我们提到了二叉搜索树在插入时,可能会形成单边树,会降低二叉搜索的性能。因此我们需要平衡二叉搜索树,降低二叉搜索树的高度,使得二叉搜索树趋于一颗完全二叉树的样子,这样就可以提高二叉搜索树的性能。本篇文章就来介绍一种平衡二叉树,AVL树。
在这里插入图片描述

1、AVL树

1.1 AVL树的概念

二叉搜索树虽可以缩短查找的效率,但如果数据有序或接近有序二叉搜索树将退化为单支树,查找元素相当于在顺序表中搜索元素,效率低下。因此,两位俄罗斯的数学家G.M.Adelson-Velskii和E.M.Landis在1962年发明了一种解决上述问题的方法:当向二叉搜索树中插入新结点后,如果能保证每个结点的左右子树高度之差的绝对值不超过1(需要对树中的结点进行调整),即可降低树的高度,从而减少平均搜索长度。
一棵AVL树或者是空树,或者是具有以下性质的二叉搜索树:

  • 它的左右子树都是AVL树
  • 左右子树高度之差(简称平衡因子)的绝对值不超过1(-1/0/1)
    在这里插入图片描述
    如果一棵二叉搜索树是高度平衡的,它就是AVL树。如果它有n个结点,其高度可保持在O(log N),搜索时间复杂度O(log N)。
    我们了解了AVL树的基本规则后,下面我们来实现一下AVL树。

2、AVL树节点的定义

template <class K, class V>
struct AVLTreeNode
{
	AVLTreeNode<K, V>* _left;
	AVLTreeNode<K, V>* _right;
	AVLTreeNode<K, V>* _parent;
	pair<K, V> _kv;

	// 右子树 - 左子树 的高度差
	int _bf; // 平衡因子

	AVLTreeNode(const pair<K, V>& kv)
		:_left(nullptr)
		,_right(nullptr)
		,_parent(nullptr)
		,_kv(kv)
		,_bf(0)
	{}
};

3、AVL树的插入和旋转

AVL树就是在二叉搜索树的基础上引入了平衡因子,因此AVL树也可以看成是二叉搜索树。那么
AVL树的插入过程可以分为两步:
1. 按照二叉搜索树的方式插入新节点
2. 调整节点的平衡因子

当某个节点的平衡因子被修改为2的时候,就需要旋转来调节,因此就存在一下四种旋转方式:

3.1 左单旋

我们将 左单旋的情况抽象出来,如下图所示:
在这里插入图片描述

当 h >= 0,且parent->_bf == 2 && subR->_bf == 1时,触发左旋。
在这个图中,只能是在 c 子树新增,才能触发左旋的条件parent->_bf == 2 && subR->_bf == 1。此时进行左旋。
如果是在 b 子树新增,那么仅仅左旋是不够的,
旋转步骤:将60的左树变为30的右树,将60的左树变为30,最后将parent和subR的平衡因子变为0就完成了左旋。

左旋代码实现

// 左单旋
void RotateL(Node* parent)
{
    Node* subR = parent->_right;
    Node* subRL = subR->_left;
    Node* parentParent = parent->_parent;

    parent->_right = subRL;
    if (subRL)
        subRL->_parent = parent;
    subR->_left = parent;
    parent->_parent = subR;

    if (_root == parent) // 父节点就是根节点
    {
        _root = subR;
        subR->_parent = nullptr;
    }
    else // 子树情况
    {
        if (parentParent->_left == parent)
        {
            parentParent->_left = subR;
        }
        else
        {
            parentParent->_right = subR;
        }
        subR->_parent = parentParent;
    }
    // 修改平衡因子
    parent->_bf = subR->_bf = 0;
}

3.2 右单旋

我们将 右单旋的情况抽象出来,如下图所示:
在这里插入图片描述
当 h >= 0,且 parent->_bf == 2 && subL->_bf == -1时,触发右旋。
在这个图中,只能是在 a子树新增,才能触发右旋的条件parent->_bf == -2 && subL->_bf == -1。此时进行右旋。
如果是在 b 子树新增,那么仅仅右旋是不够的。
旋转步骤:将30的右树接到60的左树并断开与30的链接,再将60接到30的右树,并将60的父节点改为3,最后再调整parent与SubL的平衡因子为0,就完成整个右旋。

右旋代码实现

// 右单旋
void RotateR(Node* parent)
{
    Node* parentParent = parent->_parent;
    Node* subL = parent->_left;
    Node* subLR = subL->_right;

    parent->_left = subLR;
    if (subLR)
        subLR->_parent = parent;
    subL->_right = parent;
    parent->_parent = subL;

    if (_root == parent) // 父节点是根节点
    {
        _root = subL;
        subL->_parent = nullptr;
    }
    else // 子树情况
    {
        if (parentParent->_left == parent)
        {
            parentParent->_left = subL;
        }
        else
        {
            parentParent->_right = subL;
        }
        subL->_parent = parentParent;
    }
    // 修改平衡因子
    parent->_bf = subL->_bf = 0;
}

3.3 右左双旋

我们将 右左双旋的所有情况抽象出来,如下图所示:
在这里插入图片描述

右左双旋的本质是先将子树右旋,让右侧一侧高,再进行整体的左旋,这样就完成了高度的调整。
双旋的插入位置可以是 b/c 子树,此类型插入之后就会触发右左双旋。
旋转步骤:直接复用右旋,再复用左旋即可。不过旋转的基点不同,右旋是以subR为基点,左旋是以parent为基点旋转的。旋转就完成了,难点在于平衡因子的调节。
平衡因子的调节:
这里主要是 记下subRL最初的平衡因子它的平衡因子就代表了插入节点是在subRL的左边还是右边插入的,由此可以推出最终的parent与subR的平衡因子。

  • 当subRL->_bf = -1时,最后parent->_bf = 0,subR->_bf = 1,subRL->_bf = 0;
  • 当subRL->_bf = 0时,最后parent->_bf = 0,subR->_bf = 0,subRL->_bf = 0;
  • 当subRL->_bf = 1时,最后parent->_bf = -1,subR->_bf = 0,subRL->_bf = 0;

右左双旋的代码实现

// 右左双旋
void RotateRL(Node* parent)
{
    Node* subR = parent->_right;
    Node* subRL = subR->_left;
    int bf = subRL->_bf;

    RotateR(subR);
    RotateL(parent);

    if (bf == 0) // subRL 就是插入的
    {
        parent->_bf = subR->_bf = subRL->_bf = 0;
    }
    else if (bf == 1) // subRL 右边边插入
    {
        parent->_bf = -1;
        subR->_bf = 0;
        subRL->_bf = 0;
    }
    else if (bf == -1) // subRL 左边插入
    {
        parent->_bf = 0;
        subR->_bf = 1;
        subRL->_bf = 0;
    }
    else
    {
        assert(false);
    }
}

3.4 左右双旋

我们将 右左双旋的所有情况抽象出来,如下图所示:
在这里插入图片描述

左右双旋与右左双旋的思路是差不多的,我们来看看。
左右双旋的本质是先将子树左旋,让左侧一侧高,在进行整体的右旋,这样就完成了高度的调整。
双旋的插入位置可以是 b/c 子树,此类型插入之后就会触发左右双旋。
旋转步骤:直接复用左旋,再复用右旋即可。不过旋转的基点不同,右旋是以subR为基点,左旋是以parent为基点旋转的。旋转就完成了,难点也是在于平衡因子的调节。
平衡因子的调节:
这里主要是 记下subLR最初的平衡因子它的平衡因子就代表了插入节点是在subLR的左边还是右边插入的,由此可以推出最终的parent与subL的平衡因子。

  • 当subLR->_bf = -1时,最后parent->_bf = 1,subL->_bf = 0,subLR->_bf = 0;
  • 当subLR->_bf = 0时,最后parent->_bf = 0,subL->_bf = 0,subLR->_bf = 0;
  • 当subLR->_bf = 1时,最后parent->_bf = 0,subL->_bf = -1,subLR->_bf = 0;

左右双旋的代码实现

// 左右双旋
void RotateLR(Node* parent)
{
    Node* subL = parent->_left;
    Node* subLR = subL->_right;
    int bf = subLR->_bf;

    RotateL(subL);
    RotateR(parent);

    if (0 == bf)
    {
        parent->_bf = subL->_bf = subLR->_bf = 0;
    }
    else if (1 == bf)
    {
        parent->_bf = 0;
        subL->_bf = -1;
        subLR->_bf = 0;
    }
    else if (-1 == bf)
    {
        parent->_bf = 1;
        subL->_bf = 0;
        subLR->_bf = 0;
    }
    else
    {
        assert(false);
    }
}

3.5 insert接口实现

bool Insert(const pair<K, V>& kv)
{
    if (_root == nullptr)
    {
        _root = new Node(kv);
        return true;
    }

    Node* parent = nullptr;
    Node* cur = _root;
    // 1、先找到插入的位置
    while (cur)
    {
        if (cur->_kv.first < kv.first)
        {
            parent = cur;
            cur = cur->_right;
        }
        else if (cur->_kv.first > kv.first)
        {
            parent = cur;
            cur = cur->_left;
        }
        else
        {
            return false;
        }
    }
    // 2、new一个节点,并与parent链接起来
    cur = new Node(kv);
    if (parent->_kv.first < kv.first)
    {
        parent->_right = cur;
        cur->_parent = parent;
    }
    else
    {
        parent->_left = cur;
        cur->_parent = parent;
    }
    // 3、调平横 —— 旋转 + 平衡因子的调节
    while (parent)
    {
        if (parent->_left == cur)
        {
            parent->_bf--;
        }
        else
        {
            parent->_bf++;
        }

        if (0 == parent->_bf)
        {
            break;
        }
        else if (parent->_bf == -1 || parent->_bf == 1)
        {
            cur = parent;
            parent = parent->_parent;
        }
        else if (parent->_bf == -2 || parent->_bf == 2)
        {
            if (parent->_bf == 2 && cur->_bf == 1)
            {
                RotateL(parent);
            }
            else if (parent->_bf == 2 && cur->_bf == -1)
            {
                RotateRL(parent);
            }
            else if (parent->_bf == -2 && cur->_bf == 1)
            {
                RotateLR(parent);
            }
            else if (parent->_bf == -2 && cur->_bf == -1)
            {
                RotateR(parent);
            }

            // 1、旋转让这颗子树平衡了
            // 2、旋转降低了这颗子树的高度,恢复到跟插入前一样的高度,所以对上一层没有影响,不用继续更新
            break;
        }
        else
        {
            assert(false);
        }
    }
    return true;
}

4、判断是否为AVL树

AVL树的本质是搜索二叉树 + 平衡机制,所以验证步骤:
1、首先判断是否为搜索树,写一个中序遍历,看看是不是升序即可;
2、按照AVL树的性质来判断:

  • 每个节点的左右子树高度差绝对值小于等于1;
  • 节点的平衡因子是否正确;

判断AVL树的代码实现

bool _IsBalance(Node* pRoot)
{
    if (pRoot == nullptr)
        return true;

    int leftHeight = _Height(pRoot->_left);
    int rightHeight = _Height(pRoot->_right);
    if (rightHeight - leftHeight != pRoot->_bf)
    {
        cout << pRoot->_kv.first << "平衡因子异常" << endl;
        return false;
    }

    return rightHeight - leftHeight < 2
        && _IsAVLTree(pRoot->_left)
        && _IsAVLTree(pRoot->_right);
}

size_t _Height(Node* pRoot)
{
    if (pRoot == nullptr)
        return 0;

    int leftHeight = _Height(pRoot->_left);
    int rightHeight = _Height(pRoot->_right);

    return leftHeight > rightHeight ? leftHeight + 1 : rightHeight + 1;
}

void _InOrder(Node* pRoot)
{
    if (pRoot == nullptr)
        return;

    _InOrder(pRoot->_left);
    cout << pRoot->_kv.first << " ";
    _InOrder(pRoot->_right);
}

5、AVL树的性能

AVL树是一棵绝对平衡的二叉搜索树,其要求每个节点的左右子树高度差的绝对值都不超过1,这样可以保证查询时高效的时间复杂度,即O(log N)。但是如果要对AVL树做一些结构修改的操作,性能非常低下,比如:插入时要维护其绝对平衡,旋转的次数比较多,更差的是在删除时,有可能一直要让旋转持续到根的位置。因此:如果需要一种查询高效且有序的数据结构,而且数据的个数为静态的(即不会改变),可以考虑AVL树,但一个结构经常修改,就不太适合。
AVL树的实现代码放在代码仓库:https://gitee.com/xiaobai-is-working-hard-jy/data-structure/tree/master/AVLTree


http://www.kler.cn/a/272520.html

相关文章:

  • 使用傅里叶变换进行图像边缘检测
  • Zookeeper(16)Zookeeper的状态模型是什么?
  • Java——Stream流的peek方法详解
  • 【PyCharm】连接 Git
  • Redis的安装和使用--Windows系统
  • OpenVela——专为AIoT领域打造的开源操作系统
  • 《硬件历险》之Mac抢救出现问题的时间机器硬盘中的数据
  • 以题为例浅谈SSRF
  • 正则表达式中token=(\d+)有什么作用?【文章底部添加进大学生就业交流群】
  • 【回溯专题part1】【蓝桥杯备考训练】:n-皇后问题、木棒、飞机降落【已更新完成】
  • [嵌入式系统-39]:龙芯1B 开发学习套件 -9-PMON的文件结构
  • 分布式搜索引擎(3)
  • Vue ref函数讲解示例
  • Coursera上Golang专项课程2:Functions, Methods, and Interfaces in Go 学习笔记
  • Word使用通配符替换
  • oracle 19c打补丁到19.14
  • FMEA赋能人工智能:开启智能风险预防新纪元!
  • Spring6--基础概念
  • 【机器学习智能硬件开发全解】(七)—— 政安晨:通过ARM-Linux掌握基本技能【环境准备:树莓派】
  • CVPR2023 | 3D Data Augmentation for Driving Scenes on Camera
  • 百科源码生活资讯百科门户类网站百科知识,生活常识
  • 【C++】手撕红黑树
  • LarkXR上新了 | Apollo多终端与XR体验的优化创新
  • Vue.js动画
  • ARM Cortex R52内核 01 概述
  • rk36566 uboot - dm 模型数据结构与常见接口