当前位置: 首页 > article >正文

RabbitMQ学习总结-消息的可靠性

保证MQ消息的可靠性,主要从三个方面:发送者确认可靠性,MQ确认可靠性,消费者确认可靠性。

1.发送者可靠性:主要依赖于发送者重试机制,发送者确认机制;

发送者重试机制,其实就是配置文件配置重试规则,当消息发送失败后,会根据配置的重试次数,进行多次发送重试,如代码:

spring:
  rabbitmq:
    connection-timeout: 1s # 设置MQ的连接超时时间
    template:
      retry:
        enabled: true # 开启超时重试机制
        initial-interval: 1000ms # 失败后的初始等待时间
        multiplier: 1 # 失败后下次的等待时长倍数,下次等待时长 = initial-interval * multiplier
        max-attempts: 3 # 最大重试次数

发送者确认机制:则是依赖于消息的回执,这其中包括发送者回执,和消费者回执两种,但是这种回执都比较耗性能,会导致消息消费的很慢。并且,这也是需要在配置文件中做配置的:

spring:
  rabbitmq:
    publisher-confirm-type: correlated # 开启publisher confirm机制,并设置confirm类型
    publisher-returns: true # 开启publisher return机制

并且还要有代码的实现,这种方式极大的影响了性能,:

@Slf4j
@AllArgsConstructor
@Configuration
public class MqConfig {
    private final RabbitTemplate rabbitTemplate;

    @PostConstruct
    public void init(){
        rabbitTemplate.setReturnsCallback(new RabbitTemplate.ReturnsCallback() {
            @Override
            public void returnedMessage(ReturnedMessage returned) {
                log.error("触发return callback,");
                log.debug("exchange: {}", returned.getExchange());
                log.debug("routingKey: {}", returned.getRoutingKey());
                log.debug("message: {}", returned.getMessage());
                log.debug("replyCode: {}", returned.getReplyCode());
                log.debug("replyText: {}", returned.getReplyText());
            }
        });
    }
}
@Test
void testPublisherConfirm() {
    // 1.创建CorrelationData
    CorrelationData cd = new CorrelationData();
    // 2.给Future添加ConfirmCallback
    cd.getFuture().addCallback(new ListenableFutureCallback<CorrelationData.Confirm>() {
        @Override
        public void onFailure(Throwable ex) {
            // 2.1.Future发生异常时的处理逻辑,基本不会触发
            log.error("send message fail", ex);
        }
        @Override
        public void onSuccess(CorrelationData.Confirm result) {
            // 2.2.Future接收到回执的处理逻辑,参数中的result就是回执内容
            if(result.isAck()){ // result.isAck(),boolean类型,true代表ack回执,false 代表 nack回执
                log.debug("发送消息成功,收到 ack!");
            }else{ // result.getReason(),String类型,返回nack时的异常描述
                log.error("发送消息失败,收到 nack, reason : {}", result.getReason());
            }
        }
    });
    // 3.发送消息
    rabbitTemplate.convertAndSend("hmall.direct", "q", "hello", cd);
}

2.MQ自身的可靠性:交换机/队列/消息都实现持久化,消息不会丢失,如果是在项目中通过代码创建的交换机/队列/消息,spring默认就是持久化的,如果在mq的客户端手工配置,那就要选定各个参数了。持久化后的消息会直接进入磁盘,不在经过内存了,正常来讲有IO的操作会慢才对,但是在实际的操作中却是非常快。

MQ队列最怕的就是消息积压,导致内存溢出。在3.12版本以后,MQ直接默认就是Laz懒惰队列的模式了,这个模式会直接加载到磁盘,当用到消息的时候,会从磁盘加载到内存,磁盘空间很大,支持数百万级别的存储,所以内存溢出的可能性就会大大降低。我们可以在mq客户端手动设置为lazy队列,也可以在代码中直接实现,代码如下:

@RabbitListener(queuesToDeclare = @Queue(
        name = "lazy.queue",
        durable = "true",
        arguments = @Argument(name = "x-queue-mode", value = "lazy")
))
public void listenLazyQueue(String msg){
    log.info("接收到 lazy.queue的消息:{}", msg);
}

3.消费者的可靠性:

3.1消费者消费消息后,向MQ发送回执,让MQ知道消息是否正常被消费了,目前回执有三种:

ack:成功处理了消息,MQ从队列中就会删除消息,正常。

nack:失败处理了消息,MQ需要再次投递消息,这会出现一直重试的问题。

reject:消息失败,并拒绝了消息,并且从队列中删除了消息。这个消息被删除了,岂不是数据就丢失了。

对于以上三种回执,基本回执都是固定的,AMQP提供了消息确认的方式,不用写代码,配置就可以,配置有三种:none-配置它失败了,消息会被删除,auto-失败了,消息会回到MQ重新投递,不会丢失,不会被删除,manual-太麻烦,算了。

不过,对于auto的配置,对于返回的异常,会有两种判断:1,如果是业务异常,会自动返回nack

如果是消息处理或者校验异常,会直接进行reject

spring:
  rabbitmq:
    listener:
      simple:
        acknowledge-mode: auto

3.2 生产者有重试机制,消费者也有重试机制,但是,对于消费者的重试,如果一直失败,那就要有一定的策略,可以把这个失败的消息放到另一个交换机上,后续人工进行干预,这样可以保证消息不丢失。

对于消费者的重试配置:

spring:
  rabbitmq:
    listener:
      simple:
        retry:
          enabled: true # 开启消费者失败重试
          initial-interval: 1000ms # 初识的失败等待时长为1秒
          multiplier: 1 # 失败的等待时长倍数,下次等待时长 = multiplier * last-interval
          max-attempts: 3 # 最大重试次数
          stateless: true # true无状态;false有状态。如果业务中包含事务,这里改为false

如何把消息发送到另一个交换机上呢?

在消费者服务定义一个处理失败消息队列的交换机,这样就可以把消息存储过去了

@Configuration
@ConditionalOnProperty(name = "spring.rabbitmq.listener.simple.retry.enabled", havingValue = "true")
public class ErrorMessageConfig {
    @Bean
    public DirectExchange errorMessageExchange(){
        return new DirectExchange("error.direct");
    }
    @Bean
    public Queue errorQueue(){
        return new Queue("error.queue", true);
    }
    @Bean
    public Binding errorBinding(Queue errorQueue, DirectExchange errorMessageExchange){
        return BindingBuilder.bind(errorQueue).to(errorMessageExchange).with("error");
    }

    @Bean
    public MessageRecoverer republishMessageRecoverer(RabbitTemplate rabbitTemplate){
        return new RepublishMessageRecoverer(rabbitTemplate, "error.direct", "error");
    }
}

4.业务的幂等性判断

4.1.对于一条MQ消息,为了防止被重复消费,可以做一个唯一的msgID,当消费的时候可以先检查下这个ID,如果已经消费过了,那就不能再消费了,一定程度上可以避免被重复消费,代码如下:

@Bean
public MessageConverter messageConverter(){
    // 1.定义消息转换器
    Jackson2JsonMessageConverter jjmc = new Jackson2JsonMessageConverter();
    // 2.配置自动创建消息id,用于识别不同消息,也可以在业务中基于ID判断是否是重复消息
    jjmc.setCreateMessageIds(true);
    return jjmc;
}

4.2.还有一种保证消费唯一性的就是业务上的判断,当需要消费消息的时候,可以先提前去查询下需要消费消息的状态,如果状态已经发生了改变,自然也不用再去消费这条消息了

5.对于以上所有保证消息可靠性的方案,其实都不能完全保证,最终需要一个兜底的方案,兜底方案我们可以采取一个定时任务的方式,定时轮询检查消息是否消费。比如时间间隔多少秒进行一次轮询检查,这种方式我们可以理解为主动查询。这种兜底很大程度上可以保证业务上的一致性。


http://www.kler.cn/a/272698.html

相关文章:

  • vue 学习笔记 - 创建第一个项目 idea
  • HBase实训:纸币冠字号查询任务
  • PyTorch使用教程(6)一文讲清楚torch.nn和torch.nn.functional的区别
  • Oracle查询-in条件超过1000
  • RPC 源码解析~Apache Dubbo
  • vue自适应高度(缩放浏览器)
  • java高频面试题-高级篇
  • C# EPPlus导出dataset----Excel3样式
  • pta系列之古风排版
  • [嵌入式AI从0开始到入土]16_ffmpeg_ascend编译安装及性能测试
  • 2024-03-14学习笔记(YoloV9)
  • 比特币,区块链及相关概念简介(二)
  • d3dcompiler_43.dll缺失,5个方法处理d3dcompiler_43.dll文件缺失
  • JavaEE--小Demo
  • 二叉搜索树、B-树、B+树
  • Hadoop大数据应用:HDFS 集群节点缩容
  • Windows系统安装GeoServe结合内网穿透实现公网访问本地位置信息服务
  • C语言学习笔记day8
  • 1057:简单计算器
  • onnx 格式模型可视化工具
  • 疫情网课管理系统|基于springboot框架+ Mysql+Java+Tomcat的疫情网课管理系统设计与实现(可运行源码+数据库+设计文档+部署说明)
  • 网络安全实训Day5
  • 开源模型应用落地-qwen模型小试-合并Lora模型-进阶篇(八)
  • 比特币,区块链及相关概念简介(一)
  • Oracle中的commit与rollback
  • 27-Java MVC 模式