点云配准9:Colored-ICP的Open3D实现
目录
- 写在前面
- 准备
- 原理
- 代码实现
- 参考
- 完
写在前面
- 本文内容
- 基于Open3D实现;
- Colored-ICP算法进行点云配准;
- 包含CMakeLists,cpp源码,代码解析,编译脚本,运行结果可视化;
- 提供免费的可执行文件以及使用说明:待上传
- 平台/环境
Windows10, Ubuntu1804, CMake, Open3D - 转载请注明出处:
https://blog.csdn.net/qq_41102371/article/details/136856276
准备
编译安装、使用Open3D、PCL见:
各个版本的Open3D、PCL的编译、使用教程
本文基于Open3D 0.14.1进行编程和测试
原理
点云配准基础、ICP及其变体算法解析,见专栏文章点云配准(PointCloud Registration)
代码实现
(当前20240319,待继续更新)
#include <Eigen/Dense>
#include <iostream>
#include <memory>
#include "open3d/Open3D.h"
using namespace open3d;
void VisualizeRegistration(const open3d::geometry::PointCloud &source,
const open3d::geometry::PointCloud &target,
const Eigen::Matrix4d &Transformation) {
std::shared_ptr<geometry::PointCloud> source_transformed_ptr(
new geometry::PointCloud);
std::shared_ptr<geometry::PointCloud> target_ptr(new geometry::PointCloud);
*source_transformed_ptr = source;
*target_ptr = target;
source_transformed_ptr->Transform(Transformation);
visualization::DrawGeometries({source_transformed_ptr, target_ptr},
"Registration result");
}
void PrintHelp() {
using namespace open3d;
PrintOpen3DVersion();
// clang-format off
utility::LogInfo("Usage:");
utility::LogInfo(" > RegistrationColoredICP source_pcd target_pcd [--visualize]");
// clang-format on
utility::LogInfo("");
}
int main(int argc, char *argv[]) {
using namespace open3d;
utility::SetVerbosityLevel(utility::VerbosityLevel::Debug);
if (argc < 3 ||
utility::ProgramOptionExistsAny(argc, argv, {"-h", "--help"})) {
PrintHelp();
return 1;
}
bool visualize = false;
if (utility::ProgramOptionExists(argc, argv, "--visualize")) {
visualize = true;
}
// Prepare input
std::shared_ptr<geometry::PointCloud> source =
open3d::io::CreatePointCloudFromFile(argv[1]);
std::shared_ptr<geometry::PointCloud> target =
open3d::io::CreatePointCloudFromFile(argv[2]);
if (source == nullptr || target == nullptr) {
utility::LogWarning("Unable to load source or target file.");
return -1;
}
std::vector<double> voxel_sizes = {0.05, 0.05 / 2, 0.05 / 4};
std::vector<int> iterations = {50, 30, 14};
Eigen::Matrix4d trans = Eigen::Matrix4d::Identity();
for (int i = 0; i < 3; ++i) {
float voxel_size = voxel_sizes[i];
auto source_down = source->VoxelDownSample(voxel_size);
source_down->EstimateNormals(open3d::geometry::KDTreeSearchParamHybrid(
voxel_size * 2.0, 30));
auto target_down = target->VoxelDownSample(voxel_size);
target_down->EstimateNormals(open3d::geometry::KDTreeSearchParamHybrid(
voxel_size * 2.0, 30));
auto result = pipelines::registration::RegistrationColoredICP(
*source_down, *target_down, 0.07, trans,
pipelines::registration::
TransformationEstimationForColoredICP(),
pipelines::registration::ICPConvergenceCriteria(1e-6, 1e-6,
iterations[i]));
trans = result.transformation_;
if (visualize) {
VisualizeRegistration(*source, *target, trans);
}
}
std::stringstream ss;
ss << trans;
utility::LogInfo("Final transformation = \n{}", ss.str());
return 0;
}
参考
文中已列出
完
主要做激光/影像三维重建,配准、分割等常用点云算法,熟悉open3d、pcl等开源点云库,技术交流、咨询可私信