经典控制算法——PID算法原理分析及优化
今天为大家介绍一下经典控制算法之一的PID控制方法。PID控制方法从提出至今已有百余年历史,其由于结构简单、易于实现、鲁棒性好、可靠性高等特点,在机电、冶金、机械、化工等行业中应用广泛。
在大学期间,参加的智能汽车竞赛中就使用到了PID经典控制算法,对于智能小车的调试更加的方便。
一、PID原理
PID控制方法将偏差的比例(proportional)、积分(integral)、微分(derivative)通过线性组合构成控制量,对被控对象进行控制。
常规的PID控制系统如图所示:
系统的输入r(t)为控制量的目标输出值,输出y(t)为控制量的实际输出值,e(t)为输出量目标值与实际值的偏差量,PID算法的调控是基于e(t)进行的。
比例调节是基于实际值与目标值的偏差量进行线性调节, 在系统中表现为Kpe(t),Kp为比例增益。
比例增益Kp越大调节作用越激进,输入输出的微小偏差都会造成很大的调节动作;相反的Kp越小调节作用越保守,即使输入输出差异很大系统的调节效果都不太明显。
积分调节是利用历史偏差量的累计对系统输出进行调节,在系统种表示为:
积分调节的意义是消除系统的稳态误差。积分增益Ki越大系统的稳态误差消除的越快,Ki越小系统的稳态误差越不易消除,系统的调节精度越差。但是Ki过大会在响应过程产生较大超调,导致积分饱和现象的产生。
微分调节是基于偏差量的变化速率(偏差求导)对系统输出进行调节,在系统种表示为: