NSDT工具推荐: Three.js AI纹理开发包 - YOLO合成数据生成器 - GLTF/GLB在线编辑 - 3D模型格式在线转换 - 可编程3D场景编辑器 - REVIT导出3D模型插件 - 3D模型语义搜索引擎 - AI模型在线查看 - Three.js虚拟轴心开发包 - 3D模型在线减面 - STL模型在线切割
建筑领域完全可以从机器学习和人工智能(AI)的出现中受益。 作为 Autodesk BIM 360 Project IQ 团队的一员,我有幸参与 Autodesk 进军建筑机器学习领域。
本文总结了这一领域的发展,并介绍了人们可以准备从这项技术中实现价值最大化的一些方法,包括对人工智能和机器学习在建筑中的一些应用及其潜在影响的广泛调查。 这些流程正在各个领域发生变化,包括风险管理、进度管理、分包商管理、施工现场环境监控和安全等。
1、人工智能是什么意思?
公众对AI的看法通常介于两个极端之间:一是让它统治世界,二是被认为是幻想,在严肃的对话中没有立足之地。 事实上,事实介于两者之间,人工智能远不是一种超级智能,而是一个已经找到了巨大应用的研究分支,并且是当今技术应用的一个重要驱动因素。
传统上,定义人工智能一直是一个挑战。 “人工”是定义中更容易的部分,它可以简单地意味着“不是自然发生的”。另一方面,“智能”却让研究人员陷入了几个兔子洞。 一般来说,人工智能指的是一个广泛的科学领域,涵盖从计算机科学、心理学到哲学和语言学等一系列学科。 它主要涉及让计算机完成通常需要人类智能的任务。 本系列文章提供了更深入的阅读来理解人工智能的定义和历史。
现在,人工智能的更广泛范围内有许多工作领域,但在这里我想定义两个更受欢迎的领域 ——机器学习和深度学习。 机器学习就是这样一个子集,它涉及编写算法,使计算机无需显式编程即可从数据中学习。 例如,如果您想编写一个算法来识别电子邮件中的垃圾邮件,则必须通过将其暴露于许多手动标记为垃圾邮件或非垃圾邮件的电子邮件示例来训练该算法。 该算法“学习”识别模式,例如某些单词或单词组合的出现,从而确定电子邮件是垃圾邮件的可能性。
深度学习可以被认为是机器学习范畴内的一组专门技术,最近才真正发展起来。 它们基于神经网络,这是一种模拟人脑神经元的机器学习算法。 深度学习在图像和语言处理领域取得了多项突破,使家庭助理和自动驾驶汽车等高级应用成为可能。
2、影响因素
人工智能作为一个学术领域已经存在很长时间了,第一次关于该主题的会议于 1956 年举行。但在过去的十年里,它更加受到人们的关注。 这可以归因于几个因素,这些因素最近本身已经有了很大改善。 所有人工智能都需要提供大量数据来支持从中得出的见解,并且在过去几年中生成的数据量大幅增加。 据 IBM 博客称,几年前,90% 的数据是在最近两年创建的。 我想今天这个比例可以延伸到 95% 左右。 随着数据的增加,可用于分析这些数据的计算能力每年都呈指数级增长,而计算能力的成本却在下降。 如今,几乎所有数据都驻留在云中,并且考虑到处理这些数据的资源的可用性,我们看到大量应用程序专注于根据从该分析中获得的见解做出更好的决策。
3、人工智能的应用
开始了解人工智能应用范围的一个好方法是检查它已经变得多么普遍。 我们每天都会收到几封电子邮件,而且大多数人花在上面的时间比我们想要的要多。 但是,您是否注意到令人发指的垃圾邮件数量已变得多么少? 五年前,您每周至少会收到一封电子邮件,声称您中了彩票。 垃圾邮件检测是机器学习最古老且更知名的应用之一。 通过查看数千封电子邮件,计算机程序已经能够“了解”垃圾邮件通常是什么样子。 它可以了解到发件人不太可能向您发送电子邮件,或者从电子邮件的文本中得知内容很可能是欺诈性的。 这只是文本处理的一个示例。