数学基础 -- 线性代数之增广矩阵
增广矩阵
增广矩阵(Augmented Matrix)是在求解线性方程组时常用的工具。它将线性方程组的系数矩阵与常数项合并在一起,形成一个扩展的矩阵,从而便于使用矩阵操作方法求解方程组。
定义
假设我们有一个线性方程组:
a 11 x 1 + a 12 x 2 + ⋯ + a 1 n x n = b 1 a 21 x 1 + a 22 x 2 + ⋯ + a 2 n x n = b 2 ⋮ a m 1 x 1 + a m 2 x 2 + ⋯ + a m n x n = b m \begin{aligned} a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n &= b_1 \\ a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n &= b_2 \\ \vdots \\ a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n &= b_m \end{aligned} a11x1+a12x2+⋯+a1nxna21x1+a22x2+⋯+a2nxn⋮am1x1+am2x2+⋯+amnxn=b1=b2=bm
其对应的系数矩阵 A A A 是:
A = ( a 11 a 12 … a 1 n a 21 a 22 … a 2 n ⋮ ⋮ ⋱ ⋮ a m 1 a m 2 … a m n ) A = \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{pmatrix} A= a11a21⋮am1a12a22⋮am2……⋱…a1na2n⋮amn
常数项列矩阵 B B B 是:
B = ( b 1 b 2 ⋮ b m ) B = \begin{pmatrix} b_1 \\ b_2 \\ \vdots \\ b_m \end{pmatrix} B= b1b2⋮bm
增广矩阵就是将系数矩阵和常数项列矩阵合并,构成的一个新的矩阵 [ A ∣ B ] [A|B] [A∣B] 形式:
[ A ∣ B ] = ( a 11 a 12 … a 1 n ∣ b 1 a 21 a 22 … a 2 n ∣ b 2 ⋮ ⋮ ⋱ ⋮ ∣ ⋮ a m 1 a m 2 … a m n ∣ b m ) [A|B] = \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} & | & b_1 \\ a_{21} & a_{22} & \dots & a_{2n} & | & b_2 \\ \vdots & \vdots & \ddots & \vdots & | & \vdots \\ a_{m1} & a_{m2} & \dots & a_{mn} & | & b_m \end{pmatrix} [A∣B]= a11a21⋮am1a12a22⋮am2……⋱…a1na2n⋮amn∣∣∣∣b1b2⋮bm
用途
增广矩阵在求解线性方程组中非常有用。通过对增广矩阵进行初等行变换(类似高斯消元法),可以将其化为简化的形式,从而得出线性方程组的解。这种方法简化了手动处理多个方程的复杂性,尤其在使用计算机算法时非常高效。
解法步骤(使用增广矩阵求解线性方程组)
- 构建增广矩阵:将线性方程组的系数矩阵和常数项矩阵结合为增广矩阵。
- 进行初等行变换:对增广矩阵进行高斯消元或高斯-约当消元,将其化为行简化阶梯形矩阵。
- 提取解:根据化简后的矩阵形式,可以直接得出方程组的解。
增广矩阵的好处在于,它使得整个求解过程可以通过矩阵操作来完成,减少了繁琐的方程处理过程。
增广矩阵常数部分多列的处理方法及详细解析
1. 问题背景
在处理线性方程组时,增广矩阵是常用的工具。通常情况下,增广矩阵的常数部分(即右端项)是一列。但在某些情况下,增广矩阵的常数部分可以包含多列。本文将详细解释这种情况下的处理方法,并通过一个具体的例子进行说明。
2. 多列常数部分的增广矩阵
2.1 例子描述
假设我们有两个线性方程组:
-
方程组 1:
2 x + y = 5 3 x + 2 y = 8 \begin{aligned} 2x + y &= 5 \\ 3x + 2y &= 8 \end{aligned} 2x+y3x+2y=5=8 -
方程组 2:
2 x + y = 4 3 x + 2 y = 6 \begin{aligned} 2x + y &= 4 \\ 3x + 2y &= 6 \end{aligned} 2x+y3x+2y=4=6
这两个方程组的系数矩阵相同,但右端项不同。因此我们可以构建一个增广矩阵,其中常数部分包含两列,分别对应两个方程组的右端项。
2.2 构建增广矩阵
对于上述两个方程组,构建的增广矩阵如下:
增广矩阵 = ( 2 1 ∣ 5 4 3 2 ∣ 8 6 ) \text{增广矩阵} = \begin{pmatrix} 2 & 1 & | & 5 & 4 \\ 3 & 2 & | & 8 & 6 \end{pmatrix} 增广矩阵=(2312∣∣5846)
在这个增广矩阵中:
- 系数矩阵 A A A 为 ( 2 1 3 2 ) \begin{pmatrix} 2 & 1 \\ 3 & 2 \end{pmatrix} (2312)。
- 常数矩阵 B B B 包含两列,分别是 ( 5 8 ) \begin{pmatrix} 5 \\ 8 \end{pmatrix} (58) 和 ( 4 6 ) \begin{pmatrix} 4 \\ 6 \end{pmatrix} (46)。
3. 行列梯形法处理增广矩阵
3.1 行列梯形化步骤
我们通过行列梯形法(高斯消元法)对增广矩阵进行处理:
-
通过将第二行减去 3 2 \frac{3}{2} 23 倍的第一行:
( 2 1 ∣ 5 4 0 1 2 ∣ 1 2 0 ) \begin{pmatrix} 2 & 1 & | & 5 & 4 \\ 0 & \frac{1}{2} & | & \frac{1}{2} & 0 \end{pmatrix} (20121∣∣52140) -
将第二行乘以 2:
( 2 1 ∣ 5 4 0 1 ∣ 1 0 ) \begin{pmatrix} 2 & 1 & | & 5 & 4 \\ 0 & 1 & | & 1 & 0 \end{pmatrix} (2011∣∣5140) -
通过将第一行减去第二行的1倍:
( 2 0 ∣ 4 4 0 1 ∣ 1 0 ) \begin{pmatrix} 2 & 0 & | & 4 & 4 \\ 0 & 1 & | & 1 & 0 \end{pmatrix} (2001∣∣4140) -
将第一行除以 2,得到最终的行阶梯形:
( 1 0 ∣ 2 2 0 1 ∣ 1 0 ) \begin{pmatrix} 1 & 0 & | & 2 & 2 \\ 0 & 1 & | & 1 & 0 \end{pmatrix} (1001∣∣2120)
3.2 解的解析
最终行阶梯形矩阵表示:
( 1 0 ∣ 2 2 0 1 ∣ 1 0 ) \begin{pmatrix} 1 & 0 & | & 2 & 2 \\ 0 & 1 & | & 1 & 0 \end{pmatrix} (1001∣∣2120)
- 第一行表示:对于两个方程组,解 x x x 都为 2。
- 第二行表示:对于第一个方程组,解 y y y 为 1;对于第二个方程组,解 y y y 为 0。
因此,得到的解为:
- 方程组 1: x 1 = 2 x_1 = 2 x1=2, y 1 = 1 y_1 = 1 y1=1。
- 方程组 2: x 2 = 2 x_2 = 2 x2=2, y 2 = 0 y_2 = 0 y2=0。
4. 常见疑问解答
4.1 为什么增广矩阵的常数部分可以有多列?
当我们有多个方程组,并且这些方程组共享相同的系数矩阵时,可以将不同的右端项(常数部分)放在增广矩阵的多列中,从而一次性求解多个方程组的解。
4.2 为什么两个2出现在增广矩阵的第一行?
两个2的出现表明,对于两个方程组,经过行列梯形化后,得到的 x x x 值在这两个方程组中都是相同的。这是因为它们共享相同的系数矩阵,并且在化简过程中,这两个方程组的右端项没有导致 x x x 值的变化。
4.3 如果方程组的系数矩阵不同怎么办?
如果方程组的系数矩阵不同,不能使用同一个增广矩阵同时求解这两个方程组。你需要分别构建增广矩阵,并对它们分别进行行列梯形化或其他解法。
5. 总结
通过行列梯形法,可以有效处理增广矩阵的常数部分包含多列的情况。这种方法特别适用于同时解多个具有相同系数矩阵的方程组。如果方程组的系数矩阵不同,则需要分别处理。
希望这个文档对理解增广矩阵的应用有所帮助。如有更多疑问,欢迎进一步探讨。