深入理解红黑树:在C++中实现插入、删除和查找操作
深入理解红黑树:在C++中实现插入、删除和查找操作
红黑树是一种自平衡二叉搜索树,广泛应用于各种算法和系统中。它通过颜色属性和旋转操作来保持树的平衡,从而保证插入、删除和查找操作的时间复杂度为O(log n)。本文将详细介绍如何在C++中实现一个红黑树,并提供插入、删除和查找操作的具体实现。
红黑树的基本性质
红黑树具有以下性质:
- 每个节点要么是红色,要么是黑色。
- 根节点是黑色。
- 每个叶子节点(NIL节点)是黑色。
- 如果一个节点是红色的,则它的两个子节点都是黑色的(即没有两个连续的红色节点)。
- 对每个节点,从该节点到其所有后代叶子节点的路径上,包含相同数量的黑色节点。
这些性质确保了红黑树的平衡性,使得树的最长路径不会超过最短路径的两倍。
红黑树节点定义
首先,我们定义一个红黑树节点类,用于表示红黑树中的每个节点。
enum Color { RED, BLACK };
template <typename T>
class Node {
public:
T data;
Color color;
Node* left;
Node* right;
Node* parent;
Node(T data) : data(data), color(RED), left(nullptr), right(nullptr), parent(nullptr) {}
};
红黑树类定义
接下来,我们定义一个红黑树类,包含红黑树的基本结构和成员函数。
template <typename T>
class RedBlackTree {
private:
Node<T>* root;
void rotateLeft(Node<T>*& root, Node<T>*& pt);
void rotateRight(Node<T>*& root, Node<T>*& pt);
void fixInsert(Node<T>*& root, Node<T>*& pt);
void fixDelete(Node<T>*& root, Node<T>*& pt);
void inorderHelper(Node<T>* root);
Node<T>* BSTInsert(Node<T>* root, Node<T>* pt);
Node<T>* minValueNode(Node<T>* node);
Node<T>* deleteBST(Node<T>* root, T data);
public:
RedBlackTree() : root(nullptr) {}
void insert(const T& data);
void deleteNode(const T& data);
bool search(const T& data);
void inorder();
};
插入操作
插入操作包括标准的二叉搜索树插入和红黑树的修复操作。首先,我们进行标准的BST插入,然后通过旋转和重新着色来修复红黑树的性质。
template <typename T>
void RedBlackTree<T>::insert(const T& data) {
Node<T>* pt = new Node<T>(data);
root = BSTInsert(root, pt);
fixInsert(root, pt);
}
template <typename T>
Node<T>* RedBlackTree<T>::BSTInsert(Node<T>* root, Node<T>* pt) {
if (root == nullptr) return pt;
if (pt->data < root->data) {
root->left = BSTInsert(root->left, pt);
root->left->parent = root;
} else if (pt->data > root->data) {
root->right = BSTInsert(root->right, pt);
root->right->parent = root;
}
return root;
}
template <typename T>
void RedBlackTree<T>::fixInsert(Node<T>*& root, Node<T>*& pt) {
Node<T>* parent_pt = nullptr;
Node<T>* grand_parent_pt = nullptr;
while ((pt != root) && (pt->color != BLACK) && (pt->parent->color == RED)) {
parent_pt = pt->parent;
grand_parent_pt = pt->parent->parent;
if (parent_pt == grand_parent_pt->left) {
Node<T>* uncle_pt = grand_parent_pt->right;
if (uncle_pt != nullptr && uncle_pt->color == RED) {
grand_parent_pt->color = RED;
parent_pt->color = BLACK;
uncle_pt->color = BLACK;
pt = grand_parent_pt;
} else {
if (pt == parent_pt->right) {
rotateLeft(root, parent_pt);
pt = parent_pt;
parent_pt = pt->parent;
}
rotateRight(root, grand_parent_pt);
std::swap(parent_pt->color, grand_parent_pt->color);
pt = parent_pt;
}
} else {
Node<T>* uncle_pt = grand_parent_pt->left;
if (uncle_pt != nullptr && uncle_pt->color == RED) {
grand_parent_pt->color = RED;
parent_pt->color = BLACK;
uncle_pt->color = BLACK;
pt = grand_parent_pt;
} else {
if (pt == parent_pt->left) {
rotateRight(root, parent_pt);
pt = parent_pt;
parent_pt = pt->parent;
}
rotateLeft(root, grand_parent_pt);
std::swap(parent_pt->color, grand_parent_pt->color);
pt = parent_pt;
}
}
}
root->color = BLACK;
}
删除操作
删除操作相对复杂,需要考虑多种情况。首先,我们进行标准的BST删除,然后通过旋转和重新着色来修复红黑树的性质。
template <typename T>
void RedBlackTree<T>::deleteNode(const T& data) {
Node<T>* node = deleteBST(root, data);
if (node != nullptr) {
fixDelete(root, node);
}
}
template <typename T>
Node<T>* RedBlackTree<T>::deleteBST(Node<T>* root, T data) {
if (root == nullptr) return root;
if (data < root->data) {
return deleteBST(root->left, data);
} else if (data > root->data) {
return deleteBST(root->right, data);
}
if (root->left == nullptr || root->right == nullptr) {
return root;
}
Node<T>* temp = minValueNode(root->right);
root->data = temp->data;
return deleteBST(root->right, temp->data);
}
template <typename T>
void RedBlackTree<T>::fixDelete(Node<T>*& root, Node<T>*& pt) {
Node<T>* sibling;
while (pt != root && pt->color == BLACK) {
if (pt == pt->parent->left) {
sibling = pt->parent->right;
if (sibling->color == RED) {
sibling->color = BLACK;
pt->parent->color = RED;
rotateLeft(root, pt->parent);
sibling = pt->parent->right;
}
if (sibling->left->color == BLACK && sibling->right->color == BLACK) {
sibling->color = RED;
pt = pt->parent;
} else {
if (sibling->right->color == BLACK) {
sibling->left->color = BLACK;
sibling->color = RED;
rotateRight(root, sibling);
sibling = pt->parent->right;
}
sibling->color = pt->parent->color;
pt->parent->color = BLACK;
sibling->right->color = BLACK;
rotateLeft(root, pt->parent);
pt = root;
}
} else {
sibling = pt->parent->left;
if (sibling->color == RED) {
sibling->color = BLACK;
pt->parent->color = RED;
rotateRight(root, pt->parent);
sibling = pt->parent->left;
}
if (sibling->left->color == BLACK && sibling->right->color == BLACK) {
sibling->color = RED;
pt = pt->parent;
} else {
if (sibling->left->color == BLACK) {
sibling->right->color = BLACK;
sibling->color = RED;
rotateLeft(root, sibling);
sibling = pt->parent->left;
}
sibling->color = pt->parent->color;
pt->parent->color = BLACK;
sibling->left->color = BLACK;
rotateRight(root, pt->parent);
pt = root;
}
}
}
pt->color = BLACK;
}
查找操作
查找操作相对简单,通过比较目标值与当前节点的值,决定向左子树还是右子树移动,直到找到目标值或到达空节点。
template <typename T>
bool RedBlackTree<T>::search(const T& data) {
Node<T>* current = root;
while (current != nullptr) {
if (data == current->data) {
return true;
} else if (data < current->data) {
current = current->left;
} else {
current = current->right;
}
}
return false;
}
中序遍历
中序遍历用于验证红黑树的结构,确保所有节点按顺序排列。
template <typename T>
void RedBlackTree<T>::inorder() {
inorderHelper(root);
}
template <typename T>
void RedBlackTree<T>::inorderHelper(Node<T>* root) {
if (root == nullptr) return;
inorderHelper(root->left);