当前位置: 首页 > article >正文

【位运算】--- 初阶题目赏析

 Welcome to 9ilk's Code World

       

(๑•́ ₃ •̀๑) 个人主页:       9ilk

(๑•́ ₃ •̀๑) 文章专栏:     算法Journey  


根据上一篇位运算的总结,我们来体会几道初阶题目。


🏠 判定字符是否唯一

📌 题目解析

判定字符是否唯一

  • s[i]中只包含小写字母。

📌 算法原理

✏️ 思路一:哈希表

利用哈希表对小写字母进行映射,如果遍历过程中出现已经映射的直接返回false,若遍历完之后都没有出现映射两次的则返回true。

时间复杂度:O(N) 

空间复杂度:O(N)

class Solution {
public:
   bool isUnique(string astr)
	{
		bool flag = true;
		int arr[27] = { 0 };//数组模拟哈希表
		for (int i = 0; i < astr.size(); i++)
		{
			char ch = astr[i];
			int pos = ch - 'a' + 1;
			arr[pos] ^= pos;
			if (!arr[pos])
			{
				flag = false;
				break;
			}
		}
		return flag;
	}
};

✏️ 思路二:位图思想

一个int有4个字节,也就是有32个bit。我们这里都是小写字母,只需要利用26个bit位进行映射就能判断是否出现过。利用位运算判断映射位置是否为1,为1则出现过返回false;为0则没出现过,将该位设置为1。

优化: 抽屉原理

桌上有十个苹果,要把这十个苹果放到九个抽屉里,无论怎样放,我们会发现至少会有一个抽屉里面至少放两个苹果。这一现象就是我们所说的"抽屉原理"。抽屉原理的一般含义为:"如果每个抽屉代表一个集合,每一个苹果就可以代表一个元素,假如有n+1个元素放到到n个集合中去,其中必定有一个集合里至少有两个元素。"抽屉原理有时也被称为鸽巢原理。

由此我们可以得到,当字符串长度大于26时,一定会出现重复,字符串长度相当于抽屉,字符相当于苹果!

class Solution {
public:
   bool isUnique(string astr)
	{
	    if(astr.size()>26) //抽屉原理
         return false;
        int bitset = 0;
        for(auto& e : astr )
        {
            int pos = e - 'a';
            if((bitset >> pos )&1) //判断该位是否为1
               return false;
             bitset |=  (1 << pos);//设置为1   
        } 
		return true;
	}
};

🏠 丢失的数字

📌 题目解析

丢失的数字

📌 算法原理

✏️ 思路一 :  高斯求和公式

知道了数组长度n,则原本数字总个数应该为n+1个.遍历一遍数组求和sum,由于高斯求和公式(等差数列公式),则我们可以求原本未缺失数字时的总和,减去sum就是缺失的数字。

参考代码:

class Solution {
public:
    int missingNumber(vector<int>& nums) 
    {
        int size = nums.size() + 1;
        int count = (size*(size - 1)) / 2;
        cout << count <<endl;
        int sum = 0;
        for(auto e :nums)
        {
            sum += e;
        }
        return count - sum;
    }
};

✏️ 思路二 : 异或运算

我们知道异或其中两条运算律是a^a=0和结合率,因此我们遍历一遍原来的数字,再遍历一遍缺失数组,最后得到的数就是缺失的数字,因为未缺失的在两次过程相当于出现两次,也就是会异或为0,最后只剩缺失的没有配对.

参考代码:

class Solution {
public:
    int missingNumber(vector<int>& nums) 
    {  //思路:我们先将范围内的数异或再异或数组每一个数 最后得到的就是丢失的
        int ret = 0;
        int n = nums.size();
        for(int i = 0 ; i <= n ; i++)
        {
            ret ^= i;
        } 
        for(const auto& e : nums)
        {
            ret ^= e;
        }
      return ret;
    }
};

🏠 两整数之和

📌 题目解析

两整数之和

📌 算法原理

我们前面说过按位与本质上是无进位相加。那多出来的进位信息在哪呢?其实按位与就能保存进位信息。那是因为如果两个数某个位上的数字都是1话,就需要进位,此时按位与得到的还是1,而如果两个数中有一位是0的话按位与就是0,因此通过按位与能很好的知道那一位进位,那一位不进位。

注:由于仅仅一次按位与只是提取到进位信息,重要的是不断地将进位信息用完,直到进位信息为0(进位信息用完)。因此我们需要不断地用进位信息进行无进位相加直到用完进位信息。同时要注意在进位的过程中也会产生进位。

参考代码:

class Solution {
public:
  int getSum(int a, int b)
	{
		int next = (a & b) << 1; //进位信息 按位与之后再左移一位才是进位信息 因为进的位是给下一位的
		int ret = a ^ b;//无进位相加
		while (next)
		{
			int del = next;
			next = (next & ret) << 1;
			ret ^= del; //用进位信息进行无进位相加
		}
		return ret;
	}
};

完。


http://www.kler.cn/a/288132.html

相关文章:

  • 跳表和Mysql联合索引的最左原则和索引下推的优化
  • fitz获取pdf内容
  • Windows下调试Dify相关组件(2)--后端Api
  • NameNode 的 Web 界面
  • 【Vue2 + Vue3】前端八股文面试题
  • 中锂天源锂电池:为卡车驻车空调提供高效、安全、持久的能源解决方案
  • 接口测试 —— 如何设计高效的测试用例!
  • 电路分析 ---- T型反馈反相比例器
  • js逆向--断点
  • 《第三十三章 高级主题 - 自定义控件》
  • [java][代码]Java中创建多线程方法
  • 第二十一届华为杯数学建模经验分享之资料分享篇
  • JS中【CSS脚本化】十个方面解读
  • CSS3文本属性详解
  • CSS中响应式设计
  • ASP.NET Core 入门教学六 异常设置
  • 对于使用Expo搭建的React Native项目:实现从图库中多选图片功能以及视频上传
  • 从心理学角度看待玄学:玄学仪式是一种通过重复和象征性行为来达到心理或情感目标的方式,能帮你放松,让你更好地面对挑战。
  • netty开发模拟qq斗地主
  • 基于SparkGraphX实现带权重的PageRank算法
  • Docker 安装 Zookeeper + Kafka 保姆级教程
  • 机器学习-1
  • 【WPF】WPF学习之【二】布局学习