当前位置: 首页 > article >正文

Spark的Web界面

在顶部导航栏上,可以点击以下选项来查看不同类型的Spark应用信息:

  1. Jobs - 此视图将列出所有已提交的作业,并提供每个作业的详细信息,如作业ID、名称、开始时间、结束时间等。
  2. Stages - 此视图可以查看作业分解成的不同阶段,包括每个阶段的任务数、当前状态等。
  3. Storage - 此视图展示了数据如何在RDDs(弹性分布式数据集)之间进行分层存储,以及它们的缓存状态。
  4. Environment - 此视图列出了与Spark应用程序相关的环境变量和配置参数。
  5. Executors - 此视图提供了关于执行器的详细信息,包括内存使用情况、磁盘使用情况、任务统计等。

Apache Spark UI中的"Executors"页面,该页面提供了关于Spark应用程序中执行器的详细信息。执行器是Spark应用程序中负责执行任务的进程。以下是页面上各部分的介绍:

Summary

  • RDD Blocks: 当前存储在执行器上的RDD块数量。
  • Storage Memory: 执行器上用于存储的内存总量,以及当前已使用的存储内存。
  • Disk Used: 执行器上用于存储的磁盘空间总量,以及当前已使用的磁盘空间。
  • Cores: 执行器上可用的CPU核心数。
  • Active Tasks: 当前正在执行的任务数量。
  • Failed Tasks: 已经失败的任务数量。
  • Complete Tasks: 已经完成的任务数量。
  • Total Tasks: 执行器上总共处理的任务数量。
  • Task Time (GC Time): 执行器上所有任务的总执行时间,以及其中的垃圾回收时间。
  • Input: 任务处理的输入数据量。
  • Shuffle Read: 任务执行期间从其他执行器读取的shuffle数据量。
  • Shuffle Write: 任务执行期间写入的shuffle数据量。
  • Excluded: 被排除的执行器数量。

Executors

  • Executor ID: 执行器的唯一标识符。
  • Address: 执行器的网络地址。
  • Status: 执行器的状态,如Active(活跃)或Dead(已死)。
  • RDD Blocks: 执行器上存储的RDD块数量。
  • Storage Memory: 执行器上用于存储的内存总量,以及当前已使用的存储内存。
  • Disk Used: 执行器上用于存储的磁盘空间总量,以及当前已使用的磁盘空间。
  • Cores: 执行器上可用的CPU核心数。
  • Active Tasks: 当前正在执行的任务数量。
  • Failed Tasks: 已经失败的任务数量。
  • Complete Tasks: 已经完成的任务数量。
  • Total Tasks: 执行器上总共处理的任务数量。
  • Task Time (GC Time): 执行器上所有任务的总执行时间,以及其中的垃圾回收时间。
  • Input: 任务处理的输入数据量。
  • Shuffle Read: 任务执行期间从其他执行器读取的shuffle数据量。
  • Shuffle Write: 任务执行期间写入的shuffle数据量。
  • Thread Dump: 提供执行器的线程转储链接。
  • Heap Histogram: 提供执行器的堆内存使用情况的直方图链接。
  • Add Time: 执行器被添加到集群的时间。
  • Remove Time: 执行器从集群中移除的时间。

这个页面对于监控和调试Spark应用程序非常有用,因为它提供了关于执行器资源使用情况、任务状态和性能的详细信息。


http://www.kler.cn/a/290073.html

相关文章:

  • 互联网全景消息(10)之Kafka深度剖析(中)
  • 用vscode写latex-1
  • 修改sshd默认配置,提升安全
  • YangQG 面试题汇总
  • 记录一次电脑被入侵用来挖矿的过程(Trojan、Miner、Hack、turminoob)
  • 20240831-PostgreSQL小课持续更新
  • Unity(2022.3.41LTS) - UI详细介绍-Dropdown(下拉列表)
  • 《机器学习》周志华-CH4(决策树)
  • (六)进入MySQL 【MySQL高阶语句】
  • Oracle 和 PostgreSQL 主从对比介绍
  • 基于SpringBoot的校园闲置物品交易管理系统
  • 【linux】Cannot find a valid baseurl for repo: base/7/x86_64、linux常见的命令
  • docker实战基础四(如何在容器中调试和排查运行问题)
  • RFID光触发标签与端口自检功能新型光交箱哑资源管理方案
  • 基于深度学习的植物虫害检测
  • UDP报文结构
  • 【机器学习】集成学习的基本概念、Bagging和Boosting的区别以及集成学习方法在python中的运用(含python代码)
  • Python集成学习和随机森林算法使用详解
  • HarmonyOS开发实战( Beta5版)Stack组件实现滚动吸顶效果实现案例
  • 第86集《大佛顶首楞严经》
  • JVM 锁的种类
  • 一起学习LeetCode热题100道(70/100)
  • 深入了解 Kafka:应用场景、架构和GO代码示例
  • lodash
  • 网络安全服务基础Windows--第9节-DNS部署与安全