当前位置: 首页 > article >正文

Sentence-BERT实现文本匹配【对比损失函数】

引言

还是基于Sentence-BERT架构,或者说Bi-Encoder架构,但是本文使用的是参考2中提出的对比损失函数。

架构

image-20210923000654664

如上图,计算两个句嵌入 u \pmb u u v \pmb v v​之间的距离(1-余弦相似度),然后使用参考2中提出的对比损失函数作为目标函数:
L = y × 1 2 ( distance ( u , v ) ) 2 + ( 1 − y ) × 1 2 { max ⁡ ( 0 , m − distance ( u , v ) ) } 2 \mathcal L= y\times \frac{1}{2} (\text{distance}(\pmb u,\pmb v))^2 + (1-y)\times \frac{1}{2} \{ \max(0, m - \text{distance}(\pmb u,\pmb v)) \}^2\\ L=y×21(distance(u,v))2+(1y)×21{max(0,mdistance(u,v))}2
这里的 y y y是真实标签,相似为1,不相似为0; m m m​表示margin(间隔值),默认为0.5。

这里 m m m的意思是,如果 u \pmb u u v \pmb v v不相似( y = 0 y=0 y=0),那么它们之间的距离只要足够大,大于等于间隔值0.5就好了。假设距离为0.6,那么 max ⁡ ( 0 , 0.5 − 0.6 ) = 0 \max(0,0.5-0.6)=0 max(0,0.50.6)=0,如果距离不够大( 0.2 0.2 0.2),那么 max ⁡ ( 0 , 0.5 − 0.2 ) = 0.3 \max(0,0.5-0.2)=0.3 max(0,0.50.2)=0.3,就会产生损失值。

整个公式的目的是拉近相似的文本对,推远不相似的文本对到一定程度就可以了。实现的时候 max ⁡ \max max可以用relu来表示。

实现

实现采用类似Huggingface的形式,每个文件夹下面有一种模型。分为modelingargumentstrainer等不同的文件。不同的架构放置在不同的文件夹内。

modeling.py:

from dataclasses import dataclass

import torch
from torch import Tensor, nn

from transformers.file_utils import ModelOutput

from transformers import (
    AutoModel,
    AutoTokenizer,
)

import numpy as np
from tqdm.autonotebook import trange
from typing import Optional

from enum import Enum
import torch.nn.functional as F

# 定义了三种距离函数
# 余弦相似度值越小表示越不相似,1减去它就变成了距离函数,越小(余弦越接近1)表示越相似。
class SiameseDistanceMetric(Enum):
    """The metric for the contrastive loss"""

    EUCLIDEAN = lambda x, y: F.pairwise_distance(x, y, p=2)
    MANHATTAN = lambda x, y: F.pairwise_distance(x, y, p=1)
    COSINE_DISTANCE = lambda x, y: 1 - F.cosine_similarity(x, y)


@dataclass
class BiOutput(ModelOutput):
    loss: Optional[Tensor] = None
    scores: Optional[Tensor] = None


class SentenceBert(nn.Module):
    def __init__(
        self,
        model_name: str,
        trust_remote_code: bool = True,
        max_length: int = None,
        margin: float = 0.5,
        distance_metric=SiameseDistanceMetric.COSINE_DISTANCE,
        pooling_mode: str = "mean",
        normalize_embeddings: bool = False,
    ) -> None:
        super().__init__()
        self.model_name = model_name
        self.normalize_embeddings = normalize_embeddings

        self.device = "cuda" if torch.cuda.is_available() else "cpu"

        self.tokenizer = AutoTokenizer.from_pretrained(
            model_name, trust_remote_code=trust_remote_code
        )
        self.model = AutoModel.from_pretrained(
            model_name, trust_remote_code=trust_remote_code
        ).to(self.device)

        self.max_length = max_length
        self.pooling_mode = pooling_mode

        self.distance_metric = distance_metric
        self.margin = margin

    def sentence_embedding(self, last_hidden_state, attention_mask):
        if self.pooling_mode == "mean":
            attention_mask = attention_mask.unsqueeze(-1).float()
            return torch.sum(last_hidden_state * attention_mask, dim=1) / torch.clamp(
                attention_mask.sum(1), min=1e-9
            )
        else:
            # cls
            return last_hidden_state[:, 0]

    def encode(
        self,
        sentences: str | list[str],
        batch_size: int = 64,
        convert_to_tensor: bool = True,
        show_progress_bar: bool = False,
    ):
        if isinstance(sentences, str):
            sentences = [sentences]

        all_embeddings = []

        for start_index in trange(
            0, len(sentences), batch_size, desc="Batches", disable=not show_progress_bar
        ):
            batch = sentences[start_index : start_index + batch_size]

            features = self.tokenizer(
                batch,
                padding=True,
                truncation=True,
                return_tensors="pt",
                return_attention_mask=True,
                max_length=self.max_length,
            ).to(self.device)

            out_features = self.model(**features, return_dict=True)
            embeddings = self.sentence_embedding(
                out_features.last_hidden_state, features["attention_mask"]
            )
            if not self.training:
                embeddings = embeddings.detach()

            if self.normalize_embeddings:
                embeddings = torch.nn.functional.normalize(embeddings, p=2, dim=1)

            if not convert_to_tensor:
                embeddings = embeddings.cpu()

            all_embeddings.extend(embeddings)

        if convert_to_tensor:
            all_embeddings = torch.stack(all_embeddings)
        else:
            all_embeddings = np.asarray([emb.numpy() for emb in all_embeddings])

        return all_embeddings

    def compute_loss(self, source_embed, target_embed, labels):
        labels = torch.tensor(labels).float().to(self.device)
		# 计算距离
        distances = self.distance_metric(source_embed, target_embed)
		# 实现损失函数
        loss = 0.5 * (
            labels * distances.pow(2)
            + (1 - labels) * F.relu(self.margin - distances).pow(2)
        )
        return loss.mean()

    def forward(self, source, target, labels) -> BiOutput:
        """
        Args:
            source :
            target :
        """
        source_embed = self.encode(source)
        target_embed = self.encode(target)

        loss = self.compute_loss(source_embed, target_embed, labels)
        return BiOutput(loss, None)

    def save_pretrained(self, output_dir: str):
        state_dict = self.model.state_dict()
        state_dict = type(state_dict)(
            {k: v.clone().cpu().contiguous() for k, v in state_dict.items()}
        )
        self.model.save_pretrained(output_dir, state_dict=state_dict)

整个模型的实现放到modeling.py文件中。

arguments.py:

from dataclasses import dataclass, field
from typing import Optional

import os


@dataclass
class ModelArguments:
    model_name_or_path: str = field(
        metadata={
            "help": "Path to pretrained model"
        }
    )
    config_name: Optional[str] = field(
        default=None,
        metadata={
            "help": "Pretrained config name or path if not the same as model_name"
        },
    )
    tokenizer_name: Optional[str] = field(
        default=None,
        metadata={
            "help": "Pretrained tokenizer name or path if not the same as model_name"
        },
    )


@dataclass
class DataArguments:
    train_data_path: str = field(
        default=None, metadata={"help": "Path to train corpus"}
    )
    eval_data_path: str = field(default=None, metadata={"help": "Path to eval corpus"})
    max_length: int = field(
        default=512,
        metadata={
            "help": "The maximum total input sequence length after tokenization for input text."
        },
    )

    def __post_init__(self):
        if not os.path.exists(self.train_data_path):
            raise FileNotFoundError(
                f"cannot find file: {self.train_data_path}, please set a true path"
            )
        
        if not os.path.exists(self.eval_data_path):
            raise FileNotFoundError(
                f"cannot find file: {self.eval_data_path}, please set a true path"
            )

定义了模型和数据相关参数。

dataset.py:

from torch.utils.data import Dataset
from datasets import Dataset as dt
import pandas as pd

from utils import build_dataframe_from_csv


class PairDataset(Dataset):
    def __init__(self, data_path: str) -> None:

        df = build_dataframe_from_csv(data_path)
        self.dataset = dt.from_pandas(df, split="train")

        self.total_len = len(self.dataset)

    def __len__(self):
        return self.total_len

    def __getitem__(self, index) -> dict[str, str]:
        query1 = self.dataset[index]["query1"]
        query2 = self.dataset[index]["query2"]
        label = self.dataset[index]["label"]
        return {"query1": query1, "query2": query2, "label": label}


class PairCollator:
    def __call__(self, features) -> dict[str, list[str]]:
        queries1 = []
        queries2 = []
        labels = []

        for feature in features:
            queries1.append(feature["query1"])
            queries2.append(feature["query2"])
            labels.append(feature["label"])

        return {"source": queries1, "target": queries2, "labels": labels}

数据集类考虑了LCQMC数据集的格式,即成对的语句和一个数值标签。类似:

Hello.	Hi.	1
Nice to see you.	Nice	0

trainer.py:

import torch
from transformers.trainer import Trainer

from typing import Optional
import os
import logging

from modeling import SentenceBert

TRAINING_ARGS_NAME = "training_args.bin"
logger = logging.getLogger(__name__)


class BiTrainer(Trainer):

    def compute_loss(self, model: SentenceBert, inputs, return_outputs=False):
        outputs = model(**inputs)
        loss = outputs.loss

        return (loss, outputs) if return_outputs else loss

    def _save(self, output_dir: Optional[str] = None, state_dict=None):
        # If we are executing this function, we are the process zero, so we don't check for that.
        output_dir = output_dir if output_dir is not None else self.args.output_dir
        os.makedirs(output_dir, exist_ok=True)
        logger.info(f"Saving model checkpoint to {output_dir}")

        self.model.save_pretrained(output_dir)

        if self.tokenizer is not None:
            self.tokenizer.save_pretrained(output_dir)

        # Good practice: save your training arguments together with the trained model
        torch.save(self.args, os.path.join(output_dir, TRAINING_ARGS_NAME))

继承🤗 Transformers的Trainer类,重写了compute_loss_save方法。

这样我们就可以利用🤗 Transformers来训练我们的模型了。

utils.py:

import torch
import pandas as pd
from scipy.stats import pearsonr, spearmanr
from typing import Tuple


def build_dataframe_from_csv(dataset_csv: str) -> pd.DataFrame:
    df = pd.read_csv(
        dataset_csv,
        sep="\t",
        header=None,
        names=["query1", "query2", "label"],
    )

    return df


def compute_spearmanr(x, y):
    return spearmanr(x, y).correlation


def compute_pearsonr(x, y):
    return pearsonr(x, y)[0]


def find_best_acc_and_threshold(scores, labels, high_score_more_similar: bool):
    """Copied from https://github.com/UKPLab/sentence-transformers/tree/master"""
    assert len(scores) == len(labels)
    rows = list(zip(scores, labels))

    rows = sorted(rows, key=lambda x: x[0], reverse=high_score_more_similar)
    print(rows)

    max_acc = 0
    best_threshold = -1
    # positive examples number so far
    positive_so_far = 0
    # remain negative examples
    remaining_negatives = sum(labels == 0)

    for i in range(len(rows) - 1):
        score, label = rows[i]
        if label == 1:
            positive_so_far += 1
        else:
            remaining_negatives -= 1

        acc = (positive_so_far + remaining_negatives) / len(labels)
        if acc > max_acc:
            max_acc = acc
            best_threshold = (rows[i][0] + rows[i + 1][0]) / 2

    return max_acc, best_threshold


def metrics(y: torch.Tensor, y_pred: torch.Tensor) -> Tuple[float, float, float, float]:
    TP = ((y_pred == 1) & (y == 1)).sum().float()  # True Positive
    TN = ((y_pred == 0) & (y == 0)).sum().float()  # True Negative
    FN = ((y_pred == 0) & (y == 1)).sum().float()  # False Negatvie
    FP = ((y_pred == 1) & (y == 0)).sum().float()  # False Positive
    p = TP / (TP + FP).clamp(min=1e-8)  # Precision
    r = TP / (TP + FN).clamp(min=1e-8)  # Recall
    F1 = 2 * r * p / (r + p).clamp(min=1e-8)  # F1 score
    acc = (TP + TN) / (TP + TN + FP + FN).clamp(min=1e-8)  # Accurary
    return acc, p, r, F1


def compute_metrics(predicts, labels):
    return metrics(labels, predicts)

定义了一些帮助函数,从sentence-transformers库中拷贝了寻找最佳准确率阈值的实现find_best_acc_and_threshold

除了准确率,还计算了句嵌入的余弦相似度与真实标签之间的斯皮尔曼等级相关系数指标。

最后定义训练和测试脚本。

train.py:

from transformers import set_seed, HfArgumentParser, TrainingArguments

import logging
from pathlib import Path

from datetime import datetime

from modeling import SentenceBert
from trainer import BiTrainer
from arguments import DataArguments, ModelArguments
from dataset import PairCollator, PairDataset

logger = logging.getLogger(__name__)
logging.basicConfig(
    format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
    datefmt="%m/%d/%Y %H:%M:%S",
    level=logging.INFO,
)


def main():
    parser = HfArgumentParser((TrainingArguments, DataArguments, ModelArguments))
    training_args, data_args, model_args = parser.parse_args_into_dataclasses()
	# 根据当前时间生成输出目录
    output_dir = f"{training_args.output_dir}/{model_args.model_name_or_path.replace('/', '-')}-{datetime.now().strftime('%Y-%m-%d_%H-%M-%S')}"
    training_args.output_dir = output_dir

    logger.info(f"Training parameters {training_args}")
    logger.info(f"Data parameters {data_args}")
    logger.info(f"Model parameters {model_args}")
	# 设置随机种子
    set_seed(training_args.seed)
	# 加载预训练模型
    model = SentenceBert(
        model_args.model_name_or_path,
        trust_remote_code=True,
        max_length=data_args.max_length,
    )
	
    tokenizer = model.tokenizer
	# 构建训练和测试集
    train_dataset = PairDataset(data_args.train_data_path)
    eval_dataset = PairDataset(data_args.eval_data_path)
	# 传入参数
    trainer = BiTrainer(
        model=model,
        args=training_args,
        train_dataset=train_dataset,
        eval_dataset=eval_dataset,
        data_collator=PairCollator(),
        tokenizer=tokenizer,
    )
    Path(training_args.output_dir).mkdir(parents=True, exist_ok=True)
	# 开始训练
    trainer.train()
    trainer.save_model()


if __name__ == "__main__":
    main()

训练

基于train.py定义了train.sh传入相关参数:

timestamp=$(date +%Y%m%d%H%M)
logfile="train_${timestamp}.log"

# change CUDA_VISIBLE_DEVICES
CUDA_VISIBLE_DEVICES=3 nohup python train.py \
    --model_name_or_path=hfl/chinese-macbert-large \
    --output_dir=output \
    --train_data_path=data/train.txt \
    --eval_data_path=data/dev.txt \
    --num_train_epochs=3 \
    --save_total_limit=5 \
    --learning_rate=2e-5 \
    --weight_decay=0.01 \
    --warmup_ratio=0.01 \
    --bf16=True \
    --eval_strategy=epoch \
    --save_strategy=epoch \
    --per_device_train_batch_size=64 \
    --report_to="none" \
    --remove_unused_columns=False \
    --max_length=128 \
    > "$logfile" 2>&1 &


以上参数根据个人环境修改,这里使用的是哈工大的chinese-macbert-large预训练模型。

注意:

  • --remove_unused_columns是必须的。
  • 通过bf16=True可以加速训练同时不影响效果。
  • 其他参数可以自己调整。
100%|██████████| 11193/11193 [47:15<00:00,  4.26it/09/03/2024 18:35:18 - INFO - trainer - Saving model checkpoint to output/hfl-chinese-macbert-large-2024-09-03_17-47-58/checkpoint-11193
100%|██████████| 11193/11193 [47:29<00:00,  3.93it/s]
09/03/2024 18:35:32 - INFO - trainer - Saving model checkpoint to output/hfl-chinese-macbert-large-2024-09-03_17-47-58
{'eval_loss': 0.010313387028872967, 'eval_runtime': 58.5945, 'eval_samples_per_second': 150.219, 'eval_steps_per_second': 18.79, 'epoch': 3.0}
{'train_runtime': 2849.8189, 'train_samples_per_second': 251.349, 'train_steps_per_second': 3.928, 'train_loss': 0.006717115574075615, 'epoch': 3.0}

这里仅训练了3轮,我们拿最后保存的模型output/hfl-chinese-macbert-large-2024-09-03_17-47-58进行测试。

测试

test.py: 测试脚本见后文的完整代码。

test.sh:

# change CUDA_VISIBLE_DEVICES
CUDA_VISIBLE_DEVICES=0 python test.py \
    --model_name_or_path=output/hfl-chinese-macbert-large-2024-09-03_17-47-58 \
    --test_data_path=data/test.txt
  

输出:

TestArguments(model_name_or_path='output/hfl-chinese-macbert-large-2024-09-03_17-47-58/checkpoint-11193', test_data_path='data/test.txt', max_length=64, batch_size=128)
Batches: 100%|█████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 98/98 [00:11<00:00,  8.76it/s]
Batches: 100%|█████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 98/98 [00:11<00:00,  8.85it/s]
max_acc: 0.8944, best_threshold: 0.899751
spearman corr: 0.7950 |  pearson_corr corr: 0.7434 | compute time: 22.30s
accuracy=0.894 precision=0.899 recal=0.889 f1 score=0.8938

测试集上的准确率达到89.4%,达到了目前本系列文章的SOTA结果。spearman系数也是最佳的。

这是默认基于余弦距离训练的,修改成欧几里得距离(EUCLIDEAN),其他参数不变的情况下得到结果:

TestArguments(model_name_or_path='output/hfl-chinese-macbert-large-2024-09-03_17-50-30/checkpoint-11193', test_data_path='data/test.txt', max_length=64, batch_size=128)
Batches: 100%|█████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 98/98 [00:11<00:00,  8.79it/s]
Batches: 100%|█████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 98/98 [00:11<00:00,  8.85it/s]
max_acc: 0.8881, best_threshold: 0.999987
spearman corr: 0.7795 |  pearson_corr corr: 0.5701 | compute time: 22.26s
accuracy=0.888 precision=0.890 recal=0.885 f1 score=0.8876

准确率是88.8%,这倒没什么, 主要是最佳阈值0.999987太不合理了。

完整代码

完整代码: →点此←

本文代码是和某次提交相关的,Master分支上的代码随时可能会被优化。

参考

  1. [论文笔记]Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks
  2. [论文笔记]Dimensionality Reduction by Learning an Invariant Mapping

http://www.kler.cn/a/291299.html

相关文章:

  • 从 .NET Framework 升级到 .NET 8 后 SignalR 问题处理与解决方案
  • mysql的cpu使用率100%问题排查
  • 集成Google Maps页面提示[For development purposes only]解决方案
  • unity学习32:角色相关1,基础移动控制
  • 使用Python创建、读取和修改Word文档
  • 2025年Android NDK超全版本下载地址
  • 机器学习之监督学习(二)二元逻辑回归
  • 【conda】理解 `conda` 和 `pip`:Python 包管理工具的全面对比与最佳实践
  • 云计算国标发布 云轴科技ZStack参编
  • 手动更新 windows 补丁
  • Unity坐标系计算3D中两直线的最短距离及最近点的几何原理
  • 交换机自动化获取诊断(H3C_无人值守)
  • 2024跨境必备的软件-产品优化AI智能工具,支持Shopee、TikTok Shop、TEMU、Lazada等
  • 页面小组件-搜索栏(一)
  • django models字段类型和参数的选择
  • 假期学习-- iOS runtime的简单了解
  • vs2022 如何去掉 错误|警告的波形曲线 绿色波浪线
  • 【Python】简单的数据类型——int、float、bool、str
  • 【Linux】易忘操作集合
  • uniapp个人健康预警管理系统 微信小程序的设计与实现 38vk1
  • 2024年【陕西省安全员B证】考试题及陕西省安全员B证最新解析
  • Rust模块std::thread
  • 双指针--优选算法
  • 后端怎么处理前端传入的参数应该做哪些处理?
  • Linux 系统入门:基础知识和命令集合,用户与权限
  • 【Grafana】Nginx代理Grafana实现不开启匿名自动登录