Netty系列-2 NioServerSocketChannel和NioSocketChannel介绍
背景
本文介绍Netty的通道组件NioServerSocketChannel和NioSocketChannel,从源码的角度介绍其实现原理。
1.NioServerSocketChannel
Netty本质是对NIO的封装和增强,因此Netty框架中必然包含了对于ServerSocketChannel的构建、配置以及向选择器注册,如下所示:
// 创建ServerSocketChannel对象
ServerSocketChannel serverSocketChannel = SelectorProvider.provider().openServerSocketChannel();
// ServerSocketChannel通道设置为非阻塞
serverSocketChannel.configureBlocking(false);
// 将ServerSocketChannel通道注册至选择器
serverSocketChannel.register(Selector, opts, attachment);
// 接收客户端连接得到SocketChannel通道
SocketChannel socketChannel = serverSocketChannel.accept();
其中的构建和配置过程发生在NioServerSocketChannel的实例化过程。
1.1 NioServerSocketChannel构造函数
NioServerSocketChannel实例化过程包含了对serverSocketChannel的创建以及配置
Netty启动时,通过反射调用NioServerSocketChannel的无参构造函数创建NioServerSocketChannel对象.
private static final SelectorProvider DEFAULT_SELECTOR_PROVIDER = SelectorProvider.provider();
public NioServerSocketChannel() {
this(newSocket(DEFAULT_SELECTOR_PROVIDER));
}
public NioServerSocketChannel(ServerSocketChannel channel) {
super(null, channel, SelectionKey.OP_ACCEPT);
config = new NioServerSocketChannelConfig(this, javaChannel().socket());
}
DEFAULT_SELECTOR_PROVIDER是Provider对象,用于创建通道和选择器,newSocket方法返回一个ServerSocketChannel对象,如下所示:
private static ServerSocketChannel newSocket(SelectorProvider provider) {
try {
return provider.openServerSocketChannel();
} catch (IOException e) {
throw new ChannelException("Failed to open a server socket.", e);
}
}
NioServerSocketChannel中还维护了一个config对象用于储存该通道相关的配置,后续通过通道对象的config()
方法获取该config对象。
继续调用父类的构造方法:
protected AbstractNioChannel(Channel parent, SelectableChannel ch, int readInterestOp) {
super(parent);
this.ch = ch;
this.readInterestOp = readInterestOp;
try {
ch.configureBlocking(false);
} catch (IOException e) {
try {
ch.close();
} catch (IOException e2) {
logger.warn("Failed to close a partially initialized socket.", e2);
}
throw new ChannelException("Failed to enter non-blocking mode.", e);
}
}
// super(parent)内容如下:
protected AbstractChannel(Channel parent) {
this.parent = parent;
id = newId();
unsafe = newUnsafe();
pipeline = newChannelPipeline();
}
因此NioServerSocketChannel中包含如下属性:
[1] SelectableChannel ch:实际为ServerSocketChannel类型,即NIO中的服务端通道类型,并将其配置为非阻塞类型,以便后续向选择器注册;
[2] int readInterestOp: 值固定为SelectionKey.OP_ACCEPT,表示仅处理连接事件;
[3] pipeline: Netty的Pipeline组件,每个channel都有一个属于自己的Pipeline对象;
[4] unsafe: 对底层IO进行了封装,实际的读写操作在该类中进行处理;
[5] 其他: id唯一ID标识,parent固定为空。
1.2 NioServerSocketChannel注册
NioServerSocketChannel包含了ServerSocketChannel对象,向选择器注册NioServerSocketChannel本质是将ServerSocketChannel注册到选择器
在Netty启动流程流程中,依次构造ServerSocketChannel, 并注册到选择器上,具体逻辑为:
// NioServerSocketChannel的父类AbstractNioChannel中
// 删除try-catch异常逻辑
protected void doRegister() throws Exception {
boolean selected = false;
for (;;) {
selectionKey = javaChannel().register(eventLoop().unwrappedSelector(), 0, this);
return;
}
}
其中: javaChannel()获取NioServerSocketChannel对象的ServerSocketChannel属性;eventLoop().unwrappedSelector()为NioEventLoop这个线程绑定的选择器;此处的this表明将ServerSocketChannel注册到选择器上时,将当前的NioServerSocketChannel对象作为attachment保存到SelectionKey中,并使用volatile SelectionKey selectionKey;
属性保存了注册结果。
说明:后续选择器会执行select而阻塞,当该选择器被IO事件唤醒时,可通过SelectionKey的attachment获取NioServerSocketChannel对象,从而可以获取包括ServerSocketChannel、Pipeline、Config等其他所有相关信息。
1.3 NioServerSocketChannel处理连接
章节1.1中提到了NioServerSocketChannel的unsafe属性,unsafe用于封装底层具体的IO行为,具体的实现类为NioMessageUnsafe.
当有连接请求到达NioServerSocketChannel后,进入NioMessageUnsafe的read()方法中(详细的调用流程和线程处理关系在后续Netty的消息处理流程中介绍, 这里仅对read方法实现逻辑进行说明),read方法省去内存分配优化策略以及异常处理逻辑后的主线逻辑如下:
private final class NioMessageUnsafe extends AbstractNioUnsafe {
private final List<Object> readBuf = new ArrayList<Object>();
@Override
public void read() {
// ...
final ChannelPipeline pipeline = pipeline();
do {
// ...
doReadMessages(readBuf);
} while (allocHandle.continueReading());
int size = readBuf.size();
for (int i = 0; i < size; i ++) {
readPending = false;
pipeline.fireChannelRead(readBuf.get(i));
}
readBuf.clear();
pipeline.fireChannelReadComplete();
}
}
readBuf是一个列表类型,用于存放解析后的消息对象,解析完成后,依次遍历readBuf,并调用pipeline.fireChannelRead将消息对象发送至Netty的Pipeline组件(后面单独介绍)。
解析逻辑在doReadMessages方法中:
protected int doReadMessages(List<Object> buf) throws Exception {
SocketChannel ch = SocketUtils.accept(javaChannel());
try {
if (ch != null) {
buf.add(new NioSocketChannel(this, ch));
return 1;
}
} catch (Throwable t) {
logger.warn("Failed to create a new channel from an accepted socket.", t);
try {
ch.close();
} catch (Throwable t2) {
logger.warn("Failed to close a socket.", t2);
}
}
return 0;
}
// SocketUtils.accept(javaChannel())代码逻辑:
public static SocketChannel accept(final ServerSocketChannel serverSocketChannel) throws IOException {
// 删除try-catch异常逻辑
return AccessController.doPrivileged(new PrivilegedExceptionAction<SocketChannel>() {
@Override
public SocketChannel run() throws IOException {
return serverSocketChannel.accept();
}
});
}
javaChannel()得到ServerSocketChannel对象,serverSocketChannel.accept()得到客户端通道对象SocketChannel。将当前服务端通道NioServerSocketChannel对象和得到的客户端通道对象SocketChannel作为参数构造NioSocketChannel对象。
2.NioSocketChannel
与NioServerSocketChannel相似,NioSocketChannel也是Netty对NIO中ServerSocketChannel的封装和增强。本章节内容将包含SocketChannel的构建、配置、向选择器注册以及读取数据,如下所示:
// 得到SocketChannel对象
SocketChannel socketChannel = serverSocketChannel.accept();
// SocketChannel通道设置为非阻塞
socketChannel.configureBlocking(false);
// 将SocketChannel通道注册至选择器
socketChannel.register(Selector, opts, attachment);
// 从SocketChannel通道读取数据值缓冲区
socketChannel.read(ByteBuffer)
2.1 NioSocketChannel构造函数
每个客户端连接对应一个通道,即一个NioSocketChannel对象。
Netty收到客户端连接时,会调用NioSocketChannel构造函数创建通道对象,如下所示:
public NioSocketChannel(Channel parent, SocketChannel socket) {
super(parent, socket);
config = new NioSocketChannelConfig(this, socket.socket());
}
parent为NioServerSocketChannel对象,socket为NIO中SocketChannel对象。NioSocketChannel与NioServerSocketChannel相似,维持了一个config配置类用于存放和读取通道的配置信息。
继续沿着super调用父类的构造方法:
protected AbstractNioByteChannel(Channel parent, SelectableChannel ch) {
super(parent, ch, SelectionKey.OP_READ);
}
protected AbstractNioChannel(Channel parent, SelectableChannel ch, int readInterestOp) {
super(parent);
this.ch = ch;
this.readInterestOp = readInterestOp;
try {
ch.configureBlocking(false);
} catch (IOException e) {
try {
ch.close();
} catch (IOException e2) {
logger.warn("Failed to close a partially initialized socket.", e2);
}
throw new ChannelException("Failed to enter non-blocking mode.", e);
}
}
protected AbstractChannel(Channel parent) {
this.parent = parent;
id = newId();
unsafe = newUnsafe();
pipeline = newChannelPipeline();
}
上述构造过程逻辑较为简单,为NioSocketChannel创建一个Unsafe对象和Pipeline对象;以及将ch属性即SocketChannel设置为非阻塞。
2.2 注册选择器
NioServerSocketChannel接收客户端连接构造出NioSocketChannel对象,并通过Pipeline.fireChannelRead触发Inbound读事件后,通过Pipiline进入ServerBootstrapAcceptor处理器的channelRead方法:
public void channelRead(ChannelHandlerContext ctx, Object msg) {
final Channel child = (Channel) msg;
// ...
childGroup.register(child).addListener(new ChannelFutureListener() {//...});
}
由章节1可知msg消息为NioSocketChannel,childGroup为线程池NioEventLoopGroup对象(workgroup)。
childGroup.register(child)
表示将NioSocketChannel注册到workgroup的一个线程中,经过Unsafe对象最终会进入NioSocketChannel的doRegister方法:
@Override
protected void doRegister() throws Exception {
// ...
selectionKey = javaChannel().register(eventLoop().unwrappedSelector(), 0, this);
// ...
}
javaChannel()为NioSocketChannel的ch属性,即SocketChannel通道对象;eventLoop().unwrappedSelector()为选择器;this为NioSocketChannel对象本身;返回的SelectionKey也作为属性保存在NioSocketChannel类中。
说明:后续选择器会执行select而阻塞,当有可读消息到达时被唤醒。可通过SelectionKey得到NioSocketChannel对象,从而得到相关的SocketChannel、Pipeline、Config等其他所有相关信息。
2.3 读取消息
当有可读时间到达时,NioEvetLoop会从阻塞中被唤醒,从而执行processSelectedKeys处理IO事件:
private void processSelectedKeys() {
// ...
processSelectedKeysOptimized();
// ...
}
private void processSelectedKeysOptimized() {
for (int i = 0; i < selectedKeys.size; ++i) {
final SelectionKey k = selectedKeys.keys[i];
selectedKeys.keys[i] = null;
final Object a = k.attachment();
processSelectedKey(k, (AbstractNioChannel) a);
}
}
遍历已就绪的IO事件,调用processSelectedKey方法处理,此时k为NIO的SelectionKey对象,而attachment为NioSocketChannel对象。
private void processSelectedKey(SelectionKey k, AbstractNioChannel ch) {
final AbstractNioChannel.NioUnsafe unsafe = ch.unsafe();
int readyOps = k.readyOps();
//...
if ((readyOps & (SelectionKey.OP_READ | SelectionKey.OP_ACCEPT)) != 0 || readyOps == 0) {
unsafe.read();
}
// ...
}
根据SelectionKey和NioSocketChannel对象的readyOps确定此时IO事件为可读消息,进入unsafe.read():
@Override
public final void read() {
final ChannelConfig config = config();
final ChannelPipeline pipeline = pipeline();
final ByteBufAllocator allocator = config.getAllocator();
ByteBuf byteBuf = null;
boolean close = false;
// ...
do {
// ...
// 1.分配ButeBuf缓冲对象
byteBuf = allocHandle.allocate(allocator);
// 2.将数据读取到ButeBuf缓冲对象
allocHandle.lastBytesRead(doReadBytes(byteBuf));
if (allocHandle.lastBytesRead() <= 0) {
byteBuf.release();
byteBuf = null;
break;
}
readPending = false;
// 3.向Pipeline传递可读消息
pipeline.fireChannelRead(byteBuf);
byteBuf = null;
// 直到读取完所有消息内容
} while (allocHandle.continueReading());
// ...
// 触发消息读取完成事件
pipeline.fireChannelReadComplete();
// ...
}
代码较为清晰,重点包含3个步骤:创建ByteBuf缓冲对象(Netty自定义的,而非NIO的ByteBuffer); 将消息读取到ButeBuf对象,向Pipeline触发可读事件(在Pipeline的Handler中传递并处理消息);其中,核心逻辑在于doReadBytes(byteBuf):
@Override
protected int doReadBytes(ByteBuf byteBuf) throws Exception {
// ...
return byteBuf.writeBytes(javaChannel(), allocHandle.attemptedBytesRead());
}
javaChannel()是NIO的SocketChannel对象,继续跟进ByteBuf的writeBytes方法进入:
@Override
public int writeBytes(ScatteringByteChannel in, int length) throws IOException {
//...
int writtenBytes = setBytes(writerIndex, in, length);
//...
return writtenBytes;
}
@Override
public final int setBytes(int index, ScatteringByteChannel in, int length) throws IOException {
try {
return in.read(internalNioBuffer(index, length));
} catch (ClosedChannelException ignored) {
return -1;
}
}
可以看到底层逻辑在于in.read(internalNioBuffer(index, length))
, 返回一个ByteBuffer对象,in此时为SocketChannel, 即本质是调用NIO通道的API将数据读取至缓冲区: SocketChannel.read(ByteBuffer).
2.3 响应消息
Netty中Pipeline的任何一个Handler中都可以发送响应消息,响应消息也会沿着Pipeline的流水线传递,并经过网卡传递出去:
@Override
public void channelRead(ChannelHandlerContext ctx, Object msg) {
ctx.writeAndFlush("hello");
}
注意:需要在此Handler前添加StringEncoder编码器,将String类型转为ByteBuf类型,否则会抛出异常。因为NioSocketChannel的Unsafe对象也维持在了Pipeline的HeadContext对象中,所有的消息最终会经过Unsafe的write方法,而Unsafe只会处理ByteBuf类型消息,其他类型会抛出异常。
追踪ctx.writeAndFlush("hello")
进入invokeWriteAndFlush
方法:
void invokeWriteAndFlush(Object msg, ChannelPromise promise) {
// ...
invokeWrite0(msg, promise);
invokeFlush0();
// ...
}
依次调用invokeWrite0和invokeFlush0实现写操作和刷盘操作, 分别进入Unsafe对象的write和flush方法:
public void write(ChannelHandlerContext ctx, Object msg, ChannelPromise promise) {
unsafe.write(msg, promise);
}
public void flush(ChannelHandlerContext ctx) {
unsafe.flush();
}
unsafe最终调用doWrite方法实现IO功能:
protected void doWrite(ChannelOutboundBuffer in) throws Exception {
SocketChannel ch = javaChannel();
int writeSpinCount = config().getWriteSpinCount();
do {
// ...
ByteBuffer buffer = nioBuffers[0];
int attemptedBytes = buffer.remaining();
final int localWrittenBytes = ch.write(buffer);
--writeSpinCount;
// ...
} while (writeSpinCount > 0);
incompleteWrite(writeSpinCount < 0);
}
核心逻辑在与ch.write(buffer),其中ch和buffer分别是NIO的SocketChannel和ByteBuffer,
即Netty向客户端发送消息底层仍是借助NIO的API.