【高等代数笔记】(14-17)N阶行列式
2. N阶行列式
2.6代数余子式
3阶行列式:
a
11
(
a
22
a
33
−
a
23
a
32
)
+
a
12
(
a
23
a
31
−
a
21
a
33
)
+
a
13
(
a
21
a
32
−
a
22
a
31
)
=
a
11
(
a
22
a
33
−
a
23
a
32
)
−
a
12
(
a
21
a
33
−
a
23
a
31
)
+
a
13
(
a
21
a
32
−
a
22
a
31
)
=
a
11
∣
a
22
a
12
a
21
a
33
∣
−
a
12
∣
a
21
a
23
a
31
a
33
∣
+
a
13
∣
a
21
a
22
a
31
a
32
∣
a_{11}(a_{22}a_{33}-a_{23}a_{32})+a_{12}(a_{23}a_{31}-a_{21}a_{33})+a_{13}(a_{21}a_{32}-a_{22}a_{31})=a_{11}(a_{22}a_{33}-a_{23}a_{32})-a_{12}(a_{21}a_{33}-a_{23}a_{31})+a_{13}(a_{21}a_{32}-a_{22}a_{31})=a_{11}\begin{vmatrix} a_{22}& a_{12} \\ a_{21}& a_{33} \\ \end{vmatrix}-a_{12}\begin{vmatrix} a_{21}& a_{23} \\ a_{31}& a_{33} \\ \end{vmatrix}+a_{13}\begin{vmatrix} a_{21}& a_{22} \\ a_{31}& a_{32} \\ \end{vmatrix}
a11(a22a33−a23a32)+a12(a23a31−a21a33)+a13(a21a32−a22a31)=a11(a22a33−a23a32)−a12(a21a33−a23a31)+a13(a21a32−a22a31)=a11
a22a21a12a33
−a12
a21a31a23a33
+a13
a21a31a22a32
我们将
∣
a
22
a
12
a
21
a
33
∣
\begin{vmatrix} a_{22}& a_{12} \\ a_{21}& a_{33} \\ \end{vmatrix}
a22a21a12a33
称为
a
11
a_{11}
a11的余子式
M
11
M_{11}
M11,将
A
11
=
(
−
1
)
1
+
1
M
11
A_{11}=(-1)^{1+1}M_{11}
A11=(−1)1+1M11称为
a
11
a_{11}
a11的代数余子式,
同样地,将
∣
a
21
a
23
a
31
a
33
∣
\begin{vmatrix} a_{21}& a_{23} \\ a_{31}& a_{33} \\ \end{vmatrix}
a21a31a23a33
称为
a
12
a_{12}
a12的余子式
M
12
M_{12}
M12,将
A
12
=
(
−
1
)
1
+
2
M
12
A_{12}=(-1)^{1+2}M_{12}
A12=(−1)1+2M12称为
a
12
a_{12}
a12的代数余子式,
将
∣
a
21
a
22
a
31
a
32
∣
\begin{vmatrix} a_{21}& a_{22} \\ a_{31}& a_{32} \\ \end{vmatrix}
a21a31a22a32
称为
a
13
a_{13}
a13的余子式
M
13
M_{13}
M13将
A
13
=
(
−
1
)
1
+
3
M
13
A_{13}=(-1)^{1+3}M_{13}
A13=(−1)1+3M13称为
a
13
a_{13}
a13的代数余子式。
所以
∣
A
∣
=
∣
a
11
a
12
a
13
a
21
a
22
a
23
a
31
a
32
a
33
∣
=
a
11
A
11
+
a
12
A
12
+
a
13
A
13
|\boldsymbol{A}|=\begin{vmatrix} a_{11}& a_{12} & a_{13}\\ a_{21}& a_{22} & a_{23}\\ a_{31}& a_{32} & a_{33}\\ \end{vmatrix}=a_{11}A_{11}+a_{12}A_{12}+a_{13}A_{13}
∣A∣=
a11a21a31a12a22a32a13a23a33
=a11A11+a12A12+a13A13
探究此结论是否能推广到3阶行列式?
【定义1】 n n n阶矩阵 A = ( a i j ) \boldsymbol{A}=(a_{ij}) A=(aij),划去 A \boldsymbol{A} A的 ( i , j ) (i,j) (i,j)元所在的第 i i i行和第 j j j列剩下的元素按原来的顺序构成一个 n − 1 n-1 n−1阶行列式称为 A \boldsymbol{A} A的 ( i , j ) (i,j) (i,j)元的余子式,记作 M i j M_{ij} Mij, A i j = ( − 1 ) i + j M i j A_{ij}=(-1)^{i+j}M_{ij} Aij=(−1)i+jMij称为 A \boldsymbol{A} A的 ( i , j ) (i,j) (i,j)元的代数余子式。
2.7 行列式按某一行(列)展开
【定理1】
n
n
n阶矩阵
A
=
(
a
i
j
)
\boldsymbol{A}=(a_{ij})
A=(aij)的行列式
∣
A
∣
=
a
i
1
A
i
1
+
a
i
2
A
i
2
+
.
.
.
+
a
i
n
A
i
n
=
∑
j
=
1
n
a
i
j
A
i
j
,
i
∈
{
1
,
2
,
.
.
.
,
n
}
|\boldsymbol{A}|=a_{i1}A_{i1}+a_{i2}A_{i2}+...+a_{in}A_{in}=\sum\limits_{j=1}^{n}a_{ij}A_{ij},i\in\{1,2,...,n\}
∣A∣=ai1Ai1+ai2Ai2+...+ainAin=j=1∑naijAij,i∈{1,2,...,n}
【证】取定
A
\boldsymbol{A}
A的第
i
i
i行(取定行指标,列指标顺序未定),
∑
j
k
1
.
.
.
k
i
−
1
k
i
−
2
.
.
k
n
(
−
1
)
τ
(
i
,
1
,
.
.
.
,
i
−
1
,
i
+
1
,
.
.
.
,
n
)
a
i
j
a
1
,
k
1
.
.
.
a
i
−
1
,
k
i
−
1
a
i
+
1
,
k
i
+
1
.
.
.
a
n
,
k
n
(
i
和后面
i
−
1
个构成逆序,列指标逆序类似
)
=
∑
j
k
1
.
.
.
k
i
−
1
k
i
−
2
.
.
k
n
(
−
1
)
(
(
i
−
1
)
+
(
j
−
1
)
+
τ
(
k
1
.
.
.
k
i
−
1
k
i
+
1
.
.
.
k
n
)
(
抛除
j
)
)
a
i
j
a
1
,
k
1
.
.
.
a
i
−
1
,
k
i
−
1
a
i
+
1
,
k
i
+
1
.
.
.
a
n
,
k
n
=
∑
j
=
1
n
(
−
1
)
i
+
j
−
2
a
i
j
∑
k
1
.
.
.
k
i
−
1
k
i
+
1
.
.
.
k
n
(
−
1
)
τ
(
k
1
.
.
.
k
i
−
1
k
i
+
1
.
.
.
k
n
)
a
1
k
1
.
.
.
a
i
−
1
,
k
i
−
1
a
i
+
1.
k
i
+
1
.
.
.
a
n
k
n
=
∑
j
=
1
n
(
−
1
)
i
+
j
a
i
j
∑
k
1
.
.
.
k
i
−
1
k
i
+
1
.
.
.
k
n
(
−
1
)
τ
(
k
1
.
.
.
k
i
−
1
k
i
+
1
.
.
.
k
n
)
a
1
k
1
.
.
.
a
i
−
1
,
k
i
−
1
a
i
+
1.
k
i
+
1
.
.
.
a
n
k
n
=
∑
j
=
1
n
(
−
1
)
i
+
j
a
i
j
M
i
j
=
∑
j
=
1
n
a
i
j
A
i
j
\sum\limits_{jk_{1}...k_{i-1}k_{i-2}..k_{n}}(-1)^{\tau(i,1,...,i-1,i+1,...,n)}a_{ij}a_{1,k_{1}}...a_{i-1,k_{i-1}}a_{i+1,k_{i+1}}...a_{n,k_{n}}(i和后面i-1个构成逆序,列指标逆序类似)=\sum\limits_{jk_{1}...k_{i-1}k_{i-2}..k_{n}}(-1)^{((i-1)+(j-1)+\tau(k_{1}...k_{i-1}k_{i+1}...k_{n})(抛除j))}a_{ij}a_{1,k_{1}}...a_{i-1,k_{i-1}}a_{i+1,k_{i+1}}...a_{n,k_{n}}=\sum\limits_{j=1}^{n}(-1)^{i+j-2}a_{ij}\sum\limits_{k_{1}...k_{i-1}k_{i+1}...k_{n}}(-1)^{\tau(k_{1}...k_{i-1}k_{i+1}...k_{n})}a_{1k_{1}}...a_{i-1,k_{i}-1}a_{i+1.k_{i}+1}...a_{nk_{n}} =\sum\limits_{j=1}^{n}(-1)^{i+j}a_{ij}\sum\limits_{k_{1}...k_{i-1}k_{i+1}...k_{n}}(-1)^{\tau(k_{1}...k_{i-1}k_{i+1}...k_{n})}a_{1k_{1}}...a_{i-1,k_{i}-1}a_{i+1.k_{i}+1}...a_{nk_{n}}=\sum\limits_{j=1}^{n}(-1)^{i+j}a_{ij}M_{ij}=\sum\limits_{j=1}^{n}a_{ij}A_{ij}
jk1...ki−1ki−2..kn∑(−1)τ(i,1,...,i−1,i+1,...,n)aija1,k1...ai−1,ki−1ai+1,ki+1...an,kn(i和后面i−1个构成逆序,列指标逆序类似)=jk1...ki−1ki−2..kn∑(−1)((i−1)+(j−1)+τ(k1...ki−1ki+1...kn)(抛除j))aija1,k1...ai−1,ki−1ai+1,ki+1...an,kn=j=1∑n(−1)i+j−2aijk1...ki−1ki+1...kn∑(−1)τ(k1...ki−1ki+1...kn)a1k1...ai−1,ki−1ai+1.ki+1...ankn=j=1∑n(−1)i+jaijk1...ki−1ki+1...kn∑(−1)τ(k1...ki−1ki+1...kn)a1k1...ai−1,ki−1ai+1.ki+1...ankn=j=1∑n(−1)i+jaijMij=j=1∑naijAij
按列展开同理
证毕
【定理2】
n
n
n阶矩阵
A
=
(
a
i
j
)
\boldsymbol{A}=(a_{ij})
A=(aij)的行列式
∣
A
∣
=
a
1
j
A
1
j
+
a
2
j
A
2
j
+
.
.
.
+
a
n
j
A
n
j
=
∑
j
=
1
n
a
i
j
A
i
j
,
j
∈
{
1
,
2
,
.
.
.
,
n
}
|\boldsymbol{A}|=a_{1j}A_{1j}+a_{2j}A_{2j}+...+a_{nj}A_{nj}=\sum\limits_{j=1}^{n}a_{ij}A_{ij},j\in\{1,2,...,n\}
∣A∣=a1jA1j+a2jA2j+...+anjAnj=j=1∑naijAij,j∈{1,2,...,n}
【证】
∣
A
∣
=
∣
A
′
∣
(
按第
j
行(相当于
A
的第
j
列)展开
)
=
a
1
j
A
1
j
+
a
2
j
A
2
j
+
.
.
.
+
a
n
j
A
n
j
|\boldsymbol{A}|=|\boldsymbol{A}'|(按第j行(相当于\boldsymbol{A}的第j列)展开)=a_{1j}A_{1j}+a_{2j}A_{2j}+...+a_{nj}A_{nj}
∣A∣=∣A′∣(按第j行(相当于A的第j列)展开)=a1jA1j+a2jA2j+...+anjAnj
【定理3】
n
n
n阶矩阵
A
=
(
a
i
j
)
\boldsymbol{A}=(a_{ij})
A=(aij),当
k
≠
i
k\ne i
k=i时,
a
i
1
A
k
1
+
a
i
2
A
k
2
+
.
.
.
+
a
i
n
A
k
n
=
0
a_{i1}A_{k1}+a_{i2}A_{k2}+...+a_{in}A_{kn}=0
ai1Ak1+ai2Ak2+...+ainAkn=0
【证】根据等式左边构造一个新的行列式:
a
i
1
A
k
1
+
a
i
2
A
k
2
+
.
.
.
+
a
i
n
A
k
n
=
∣
a
11
a
12
.
.
.
a
1
n
.
.
.
.
.
.
.
.
.
.
.
.
a
i
1
a
i
2
.
.
.
a
i
n
.
.
.
.
.
.
.
.
.
.
.
.
a
i
1
a
i
2
.
.
.
a
i
n
.
.
.
.
.
.
.
.
.
.
.
.
a
n
1
a
n
2
.
.
.
a
n
n
∣
=
0
a_{i1}A_{k1}+a_{i2}A_{k2}+...+a_{in}A_{kn}=\begin{vmatrix} a_{11}& a_{12} &...& a_{1n}\\ ...& ... &...& ...\\ a_{i1}& a_{i2} &...& a_{in}\\ ...& ... &...& ...\\ a_{i1}& a_{i2} &...& a_{in}\\ ...& ... &...& ...\\ a_{n1}& a_{n2} &...& a_{nn}\\ \end{vmatrix}=0
ai1Ak1+ai2Ak2+...+ainAkn=
a11...ai1...ai1...an1a12...ai2...ai2...an2.....................a1n...ain...ain...ann
=0
【定理4】
n
n
n阶矩阵
A
=
(
a
i
j
)
\boldsymbol{A}=(a_{ij})
A=(aij),当
j
≠
l
j\ne l
j=l时,
a
1
j
A
1
l
+
a
2
j
A
2
l
+
.
.
.
+
a
n
j
A
n
l
=
0
a_{1j}A_{1l}+a_{2j}A_{2l}+...+a_{nj}A_{nl}=0
a1jA1l+a2jA2l+...+anjAnl=0
2.8 n阶范德蒙(范德蒙德)行列式
【例1】计算
∣
1
1
1
a
1
a
2
a
3
a
1
2
a
2
2
a
3
2
∣
\begin{vmatrix} 1& 1 &1\\ a_{1}& a_{2} & a_{3} \\ a_{1}^{2}& a_{2}^{2} & a_{3}^{2} \\ \end{vmatrix}
1a1a121a2a221a3a32
.
【解】
∣
1
1
1
a
1
a
2
a
3
a
1
2
a
2
2
a
3
2
∣
=
∣
1
1
1
a
1
a
2
a
3
0
a
2
2
−
a
1
a
2
a
3
2
−
a
1
a
3
∣
=
∣
1
1
1
0
a
2
−
a
1
a
3
−
a
1
0
a
2
(
a
2
−
a
1
)
a
3
(
a
3
−
a
1
)
∣
=
∣
a
2
−
a
1
a
3
−
a
1
a
2
(
a
2
−
a
1
)
a
3
(
a
3
−
a
1
)
∣
=
(
a
2
−
a
1
)
(
a
3
−
a
1
)
∣
1
1
a
2
a
3
∣
=
(
a
2
−
a
1
)
(
a
3
−
a
1
)
(
a
3
−
a
1
)
\begin{vmatrix} 1& 1 &1\\ a_{1}& a_{2} & a_{3} \\ a_{1}^{2}& a_{2}^{2} & a_{3}^{2} \\ \end{vmatrix}=\begin{vmatrix} 1& 1 &1\\ a_{1}& a_{2} & a_{3} \\ 0& a_{2}^{2}-a_{1}a_{2} & a_{3}^{2}-a_{1}a_{3} \\ \end{vmatrix}=\begin{vmatrix} 1& 1 &1\\ 0& a_{2}-a_{1} & a_{3}-a_{1} \\ 0& a_{2}(a_{2}-a_{1}) & a_{3}(a_{3}-a_{1}) \\ \end{vmatrix}=\begin{vmatrix} a_{2}-a_{1} & a_{3}-a_{1} \\ a_{2}(a_{2}-a_{1}) & a_{3}(a_{3}-a_{1}) \\ \end{vmatrix}=(a_{2}-a_{1})(a_{3}-a_{1})\begin{vmatrix} 1 & 1 \\ a_{2} & a_{3} \\ \end{vmatrix}=(a_{2}-a_{1})(a_{3}-a_{1})(a_{3}-a_{1})
1a1a121a2a221a3a32
=
1a101a2a22−a1a21a3a32−a1a3
=
1001a2−a1a2(a2−a1)1a3−a1a3(a3−a1)
=
a2−a1a2(a2−a1)a3−a1a3(a3−a1)
=(a2−a1)(a3−a1)
1a21a3
=(a2−a1)(a3−a1)(a3−a1)
将上面的例子推广到
n
n
n阶段即为范德蒙行列式:
∣
1
1
.
.
.
1
a
1
a
2
.
.
.
a
n
a
1
2
a
2
2
.
.
.
a
n
2
.
.
.
.
.
.
.
.
.
.
.
.
a
1
n
−
1
a
2
n
−
1
.
.
.
a
n
n
−
1
∣
=
(
a
2
−
a
1
)
(
a
3
−
a
1
)
.
.
.
(
a
n
−
a
1
)
(
a
3
−
a
2
)
.
.
.
(
a
n
−
a
2
)
.
.
.
(
a
n
−
a
n
−
1
)
=
∏
1
≤
j
<
i
≤
n
(
a
i
−
a
j
)
\begin{vmatrix} 1& 1 &...&1\\ a_{1}& a_{2} &...&a_{n} \\ a_{1}^{2}& a_{2}^{2} & ...& a_{n}^{2}\\ ...& ... & ...& ...\\ a_{1}^{n-1}& a_{2}^{n-1} & ...& a_{n}^{n-1}\\ \end{vmatrix}=(a_{2}-a_{1})(a_{3}-a_{1})...(a_{n}-a_{1})(a_{3}-a_{2})...(a_{n}-a_{2})...(a_{n}-a_{n-1})=\prod\limits_{1\le j<i\le n}(a_{i}-a_{j})
1a1a12...a1n−11a2a22...a2n−1...............1anan2...ann−1
=(a2−a1)(a3−a1)...(an−a1)(a3−a2)...(an−a2)...(an−an−1)=1≤j<i≤n∏(ai−aj)
【证】当
n
=
2
n=2
n=2时,显然成立
假设
n
−
1
n-1
n−1阶范德蒙行列式成立,则我们来看
n
n
n阶范德蒙行列式的情况,把
n
−
1
n-1
n−1行的
−
a
1
-a_{1}
−a1倍加到第
n
n
n行上,然后把第
n
−
2
n-2
n−2行的
−
a
1
-a_{1}
−a1倍加到第
n
−
1
n-1
n−1行上,以此类推,最后把第1行的
−
a
1
-a_{1}
−a1倍加到第2行上,得到:
原式
=
∣
1
1
1
⋯
1
0
a
2
−
a
1
a
3
−
a
1
⋯
a
n
−
a
1
0
a
2
2
−
a
1
a
2
a
3
2
−
a
1
a
3
⋯
a
n
2
−
a
1
a
n
⋮
⋮
⋮
⋮
0
a
2
n
−
2
−
a
1
a
2
n
−
3
a
3
n
−
2
−
a
1
a
3
n
−
3
⋯
a
n
n
−
2
−
a
1
a
n
n
−
3
0
a
2
n
−
1
−
a
1
a
2
n
−
2
a
3
n
−
1
−
a
1
a
3
n
−
2
⋯
a
n
n
−
1
−
a
1
a
n
n
−
2
∣
=
∣
a
2
−
a
1
a
3
−
a
1
⋯
a
n
−
a
1
a
2
(
a
2
−
a
1
)
a
3
(
a
3
−
a
1
)
⋯
a
n
(
a
n
−
a
1
)
⋮
⋮
⋮
a
2
n
−
3
(
a
2
−
a
1
)
a
3
n
−
3
(
a
3
−
a
1
)
⋯
a
n
n
−
3
(
a
n
−
a
1
)
a
2
n
−
2
(
a
2
−
a
1
)
a
3
n
−
2
(
a
3
−
a
1
)
⋯
a
n
n
−
2
(
a
n
−
a
1
)
∣
=
∣
1
1
⋯
1
a
2
a
3
⋯
a
n
⋮
⋮
⋮
a
2
n
−
3
a
3
n
−
3
⋯
a
n
n
−
3
a
2
n
−
2
a
3
n
−
2
⋯
a
n
n
−
2
∣
=
用归纳假设
(
a
2
−
a
1
)
(
a
3
−
a
1
)
⋯
(
a
n
−
a
1
)
∏
2
≤
j
<
i
≤
n
(
a
i
−
a
j
)
=
∏
1
≤
j
<
i
⩽
n
(
a
i
−
a
j
)
=\begin{array}{l} \left|\begin{array}{ccccc} 1 & 1 & 1 & \cdots & 1 \\ 0 & a_{2}-a_{1} & a_{3}-a_{1} & \cdots & a_{n}-a_{1} \\ 0 & a_{2}^{2}-a_{1} a_{2} & a_{3}^{2}-a_{1} a_{3} & \cdots & a_{n}^{2}-a_{1} a_{n} \\ \vdots & \vdots & \vdots & & \vdots \\ 0 & a_{2}^{n-2}-a_{1} a_{2}^{n-3} & a_{3}^{n-2}-a_{1} a_{3}^{n-3} & \cdots & a_{n}^{n-2}-a_{1} a_{n}^{n-3} \\ 0 & a_{2}^{n-1}-a_{1} a_{2}^{n-2} & a_{3}^{n-1}-a_{1} a_{3}^{n-2} & \cdots & a_{n}^{n-1}-a_{1} a_{n}^{n-2} \end{array}\right|\\ \begin{array}{l} =\left|\begin{array}{cccc} a_{2}-a_{1} & a_{3}-a_{1} & \cdots & a_{n}-a_{1} \\ a_{2}\left(a_{2}-a_{1}\right) & a_{3}\left(a_{3}-a_{1}\right) & \cdots & a_{n}\left(a_{n}-a_{1}\right) \\ \vdots & \vdots & & \vdots \\ a_{2}^{n-3}\left(a_{2}-a_{1}\right) & a_{3}^{n-3}\left(a_{3}-a_{1}\right) & \cdots & a_{n}^{n-3}\left(a_{n}-a_{1}\right) \\ a_{2}^{n-2}\left(a_{2}-a_{1}\right) & a_{3}^{n-2}\left(a_{3}-a_{1}\right) & \cdots & a_{n}^{n-2}\left(a_{n}-a_{1}\right) \end{array}\right| \\ =\left|\left.\begin{array}{ccccc} 1 & 1 & \cdots & 1 \\ a_{2} & a_{3} & \cdots & a_{n} \\ \vdots & \vdots & & \vdots \\ a_{2}^{n-3} & a_{3}^{n-3} & \cdots & a_{n}^{n-3} \\ a_{2}^{n-2} & a_{3}^{n-2} & \cdots & a_{n}^{n-2} \end{array} \right\rvert\,\right. \end{array}\\ \xlongequal{\text { 用归纳假设 }}\left(a_{2}-a_{1}\right)\left(a_{3}-a_{1}\right) \cdots\left(a_{n}-a_{1}\right) \prod\limits_{2 \leq j<i \leq n}\left(a_{i}-a_{j}\right)\\ =\prod\limits_{1 \leq j<i \leqslant n}\left(a_{i}-a_{j}\right) \end{array}
=
100⋮001a2−a1a22−a1a2⋮a2n−2−a1a2n−3a2n−1−a1a2n−21a3−a1a32−a1a3⋮a3n−2−a1a3n−3a3n−1−a1a3n−2⋯⋯⋯⋯⋯1an−a1an2−a1an⋮ann−2−a1ann−3ann−1−a1ann−2
=
a2−a1a2(a2−a1)⋮a2n−3(a2−a1)a2n−2(a2−a1)a3−a1a3(a3−a1)⋮a3n−3(a3−a1)a3n−2(a3−a1)⋯⋯⋯⋯an−a1an(an−a1)⋮ann−3(an−a1)ann−2(an−a1)
=
1a2⋮a2n−3a2n−21a3⋮a3n−3a3n−2⋯⋯⋯⋯1an⋮ann−3ann−2
用归纳假设 (a2−a1)(a3−a1)⋯(an−a1)2≤j<i≤n∏(ai−aj)=1≤j<i⩽n∏(ai−aj)
2.9 数域 K \textbf{K} K上 n n n个方程的 n n n元线性方程组的解与行列式的关系
增广矩阵 A ~ \tilde{\boldsymbol{A}} A~经过初等行变换化成阶梯型矩阵 J ~ \tilde{\boldsymbol{J}} J~,此时方程组的系数矩阵 A \boldsymbol{A} A在增广矩阵经过初等行变换化成阶梯型矩阵的时候,这些初等行变换也就把系数矩阵化成了阶梯型矩阵 J \boldsymbol{J} J
- 方程组无解(出现 0 = d ( d ≠ 0 ) 0=d(d\ne 0) 0=d(d=0)这样的方程) ⇒ J ~ \Rightarrow\tilde{\boldsymbol{J}} ⇒J~有非0行 ( 0 , 0 , . . . , 0 , d ) , d ≠ 0 ⇒ J (0,0,...,0,d),d\ne 0\Rightarrow\boldsymbol{J} (0,0,...,0,d),d=0⇒J有零行 ⇒ ∣ J ∣ = 0 \Rightarrow|\boldsymbol{J}|=0 ⇒∣J∣=0;
- 方程组有解(没有
0
=
d
(
d
≠
0
)
0=d(d\ne 0)
0=d(d=0)这样的方程)
(1)有无穷多个解 ⇒ J ~ \Rightarrow\tilde{\boldsymbol{J}} ⇒J~非零行的数目 r < n r<n r<n( n n n为未知数个数, J ~ \tilde{\boldsymbol{J}} J~有 n n n个行) ⇒ J ~ \Rightarrow\tilde{\boldsymbol{J}} ⇒J~有零行 ⇒ J \Rightarrow\boldsymbol{J} ⇒J有零行 ⇒ ∣ J ∣ = 0 \Rightarrow|\boldsymbol{J}|=0 ⇒∣J∣=0
(2)有唯一解 ⇒ J ~ \Rightarrow\tilde{\boldsymbol{J}} ⇒J~非零行的数目 r = n ⇒ J ~ r=n\Rightarrow\tilde{\boldsymbol{J}} r=n⇒J~的每一行都是非零行,即有 n n n个非零行 ⇒ J \Rightarrow\boldsymbol{J} ⇒J有 n n n个非零行 ⇒ J \Rightarrow\boldsymbol{J} ⇒J有 n n n个主元 ⇒ J = ( c 11 . . . . . . c n 1 0 c 12 . . . c n 2 . . . . . . . . . ⋮ 0 0 . . . c n n ) , ( c 11 , c 22 , . . . , c n n ≠ 0 ) ⇒ ∣ J ∣ = c 11 c 22 . . . c n n ≠ 0 \Rightarrow\boldsymbol{J}=\begin{pmatrix} c_{11}& ... & ... & c_{n1}\\ 0& c_{12}& ... & c_{n2}\\ ...& ... & ... &\vdots \\ 0& 0 & ... &c_{nn} \end{pmatrix},(c_{11},c_{22},...,c_{nn}\ne 0)\Rightarrow|\boldsymbol{J}|=c_{11}c_{22}...c_{nn}\ne 0 ⇒J= c110...0...c12...0............cn1cn2⋮cnn ,(c11,c22,...,cnn=0)⇒∣J∣=c11c22...cnn=0
因此 n n n元线性方程组有唯一解 ⇔ ∣ J ∣ ≠ 0 \Leftrightarrow|\boldsymbol{J}|\ne 0 ⇔∣J∣=0
由于 ∣ J ∣ = l ∣ A ∣ ( l ≠ 0 ) |\boldsymbol{J}|=l|\boldsymbol{A}|(l\ne 0) ∣J∣=l∣A∣(l=0)
因此 ∣ J ∣ ≠ 0 ⇔ ∣ A ∣ ≠ 0 |\boldsymbol{J}|\ne 0\Leftrightarrow|\boldsymbol{A}|\ne 0 ∣J∣=0⇔∣A∣=0
【定理1】数域
K
\textbf{K}
K上
n
n
n个方程的
n
n
n元线性方程组有唯一解
⇔
\Leftrightarrow
⇔它的系数矩阵
A
\boldsymbol{A}
A的行列式
∣
A
∣
≠
0
|\boldsymbol{A}|\ne 0
∣A∣=0
【注】证明在上面
【推论1】数域 K \textbf{K} K上 n n n个方程的 n n n元齐次线性方程组只有零解(有唯一解) ⇔ \Leftrightarrow ⇔它的系数矩阵 A \boldsymbol{A} A的行列式 ∣ A ∣ ≠ 0 |\boldsymbol{A}|\ne 0 ∣A∣=0,从而数域 K \textbf{K} K上 n n n个方程的 n n n元齐次线性方程组有非零解(即有无穷多解) ⇔ \Leftrightarrow ⇔它的系数矩阵 A \boldsymbol{A} A的行列式 ∣ A ∣ = 0 |\boldsymbol{A}|= 0 ∣A∣=0
2.10 行列式的几何意义
在几何学中,实数域上的二阶行列式
∣
a
1
b
1
a
2
b
2
∣
\begin{vmatrix} a_{1} &b_{1} \\ a_{2} &b_{2} \end{vmatrix}
a1a2b1b2
表示坐标分别为
(
a
1
a
2
)
,
(
b
1
b
2
)
\begin{pmatrix} a_{1}\\ a_{2} \end{pmatrix},\begin{pmatrix} b_{1}\\ b_{2} \end{pmatrix}
(a1a2),(b1b2)的向量
a
⃗
,
b
⃗
\vec{a},\vec{b}
a,b张成的平行四边形的定向面积,从
a
⃗
\vec{a}
a到
b
⃗
\vec{b}
b的旋转方向是逆时针,则该定向面积是正的,如果是顺时针方向,则为负。
实数域上的三阶行列式
∣
a
1
b
1
c
1
a
2
b
2
c
2
a
3
b
3
c
3
∣
\begin{vmatrix} a_{1} &b_{1} & c_{1} \\ a_{2} &b_{2} & c_{2} \\ a_{3} & b_{3} & c_{3} \end{vmatrix}
a1a2a3b1b2b3c1c2c3
表示坐标分别为
(
a
1
a
2
a
3
)
,
(
b
1
b
2
b
3
)
,
(
c
1
c
2
c
3
)
\begin{pmatrix} a_{1}\\ a_{2} \\ a_{3} \end{pmatrix},\begin{pmatrix} b_{1}\\ b_{2}\\ b_{3} \end{pmatrix},\begin{pmatrix} c_{1}\\ c_{2}\\ c_{3} \end{pmatrix}
a1a2a3
,
b1b2b3
,
c1c2c3
的向量
a
⃗
,
b
⃗
,
c
⃗
\vec{a},\vec{b},\vec{c}
a,b,c张成的平行六面体的定向体积。
拿出右手,然后四指从
a
⃗
\vec{a}
a弯向
b
⃗
\vec{b}
b,大拇指和
c
⃗
\vec{c}
c一致就是正的,这就是右手系,否则就是负的。
2.11 k阶子式
n n n阶矩阵 A = ( a i j ) \boldsymbol{A}=(a_{ij}) A=(aij),取定 k k k行和 k k k列,第 i 1 , i 2 , . . . , i k i_{1},i_{2},...,i_{k} i1,i2,...,ik行(其中 i 1 < i 2 < . . . < i k i_{1}<i_{2}<...<i_{k} i1<i2<...<ik),第 j 1 , j 2 , . . . , j k j_{1},j_{2},...,j_{k} j1,j2,...,jk列(其中 j 1 < j 2 < . . . < j k j_{1}<j_{2}<...<j_{k} j1<j2<...<jk),这 k k k行和 k k k列交叉处有 k 2 k^{2} k2个元素按照原来的排法形成一个 k k k阶行列式,称它为矩阵 A \boldsymbol{A} A的一个 k k k阶子式,记作 A ( i 1 , i 2 , . . . , i k j 1 , j 2 , . . . , j k ) \boldsymbol{A}\begin{pmatrix} i_{1},i_{2},...,i_{k}\\ j_{1},j_{2},...,j_{k} \end{pmatrix} A(i1,i2,...,ikj1,j2,...,jk),划去上述 k k k行和 k k k列,剩下的元素按原来的排法,形成一个 n − k n-k n−k阶行列式。称为 k k k阶子式的余子式。令 { i 1 ′ , i 2 ′ , ⋯ , i n − k ′ } = { 1 , 2 , ⋯ , n } \ { i 1 , i 2 , ⋯ , i k } \left\{i_{1}^{\prime}, i_{2}^{\prime}, \cdots, i_{n-k}^{\prime}\right\}=\{1,2, \cdots, n\} \backslash\left\{i_{1}, i_{2}, \cdots, i_{k}\right\} {i1′,i2′,⋯,in−k′}={1,2,⋯,n}\{i1,i2,⋯,ik}(集合减法)其中 i 1 ′ < i 2 ′ < . . . < i n − k ′ i_{1}^{\prime}<i_{2}^{\prime}<...<i_{n-k}^{\prime} i1′<i2′<...<in−k′,令 { j 1 ′ , j 2 ′ , ⋯ , j n − k ′ } = { 1 , 2 , ⋯ , n } \ { j 1 , j 2 , ⋯ , j k } \left\{j_{1}^{\prime}, j_{2}^{\prime}, \cdots, j_{n-k}^{\prime}\right\}=\{1,2, \cdots, n\} \backslash\left\{j_{1}, j_{2}, \cdots, j_{k}\right\} {j1′,j2′,⋯,jn−k′}={1,2,⋯,n}\{j1,j2,⋯,jk},其中 j 1 ′ < j 2 ′ < . . . < j n − k ′ j_{1}^{\prime}<j_{2}^{\prime}<...<j_{n-k}^{\prime} j1′<j2′<...<jn−k′,则 k k k阶子式的余子式也是 A \boldsymbol{A} A的一个 n − k n-k n−k阶子式: A ( i 1 ′ , i 2 ′ , ⋯ , i n − k ′ j 1 ′ , j 2 ′ , ⋯ , j n − k ′ ) \boldsymbol{A}\binom{i_{1}^{\prime}, i_{2}^{\prime}, \cdots, i_{n-k}^{\prime}}{j_{1}^{\prime}, j_{2}^{\prime}, \cdots, j_{n-k}^{\prime}} A(j1′,j2′,⋯,jn−k′i1′,i2′,⋯,in−k′),将 ( − 1 ) ( i 1 + i 2 + ⋯ + i k ) + ( j 1 + j 2 + ⋯ + j k ) A ( i 1 ′ , i 2 ′ , ⋯ , i n − k ′ j 1 ′ , j 2 ′ , ⋯ , j n − k ′ ) (-1)^{\left(i_{1}+i_{2}+\cdots+i_{k}\right)+\left(j_{1}+j_{2}+\cdots+j_{k}\right)}\boldsymbol{A}\binom{i_{1}^{\prime}, i_{2}^{\prime}, \cdots, i_{n-k}^{\prime}}{j_{1}^{\prime}, j_{2}^{\prime}, \cdots, j_{n-k}^{\prime}} (−1)(i1+i2+⋯+ik)+(j1+j2+⋯+jk)A(j1′,j2′,⋯,jn−k′i1′,i2′,⋯,in−k′)称为 k k k阶子式的代数余子式。