当前位置: 首页 > article >正文

数学建模强化宝典(13)M-K检验法

前言

       M-K检验法,全称为Mann-Kendall检验法,是一种非参数的假设检验方法,广泛应用于时间序列数据的趋势性变化检验,特别是气候序列中的趋势分析和突变点检测。以下是对M-K检验法的详细介绍:

一、定义与背景

       M-K检验法由Frank Mann和Donald R. Kendall提出并发展,因此得名Mann-Kendall检验法。该方法不依赖于数据的具体分布形式,能够处理含有异常值和非正态分布的数据,非常适合于气候、水文、环境等领域的时间序列数据分析。

二、基本原理

       M-K检验法的基本原理是通过比较每个数据点与其之前数据点的大小,来检测时间序列数据中的单调趋势(上升、下降或没有趋势)。具体步骤如下:

  1. 构造秩序列:对于时间序列中的每一个数据点,计算其之前所有数据中比它大或小的数据点个数,从而构造出一个秩序列。
  2. 计算统计量:基于秩序列,计算统计量UFk(正向序列)和UBk(反向序列),这两个统计量用于评估时间序列的趋势性和突变点。
  3. 显著性检验:将UFk和UBk与设定的显著性水平(如0.05)对应的临界值进行比较,判断趋势是否显著,以及是否存在突变点。

三、应用领域

M-K检验法广泛应用于以下领域:

  1. 气候变化研究:用于检测气候序列中的趋势变化和突变点,如气温、降水等气候要素的变化趋势。
  2. 水文水资源研究:分析河流流量、地下水位等水文要素的时间序列数据,评估其变化趋势和突变情况。
  3. 环境科学研究:在环境监测和评估中,利用M-K检验法分析污染物浓度、环境质量等指标的变化趋势。

四、优点与局限性

优点:
  1. 非参数检验:不依赖于数据的具体分布形式,适用于各种类型的时间序列数据。
  2. 抗干扰能力强:对异常值不敏感,能够较好地处理非正态分布的数据。
  3. 计算简便:计算过程相对简单,易于实现自动化处理。
局限性:
  1. 无法确定趋势形式:M-K检验法只能判断时间序列是否存在单调趋势,但无法确定趋势的具体形式(如线性、非线性等)。
  2. 对周期性变化不敏感:对于存在周期性变化的时间序列数据,M-K检验法的检测效果可能不佳。

五、实现 

       下面是一个简单的MATLAB函数,用于执行Mann-Kendall趋势检验,并计算统计量UFk(正向序列)以及可选的UBk(反向序列,用于确定突变点): 

function [UF, UB, pValue] = mannKendall(x)  
    % 输入:  
    % x - 时间序列数据向量  
    %  
    % 输出:  
    % UF - 正向序列的Mann-Kendall统计量  
    % UB - 反向序列的Mann-Kendall统计量(可选)  
    % pValue - 对应的p值(此函数不直接计算,通常需要查表或使用其他方法)  
  
    n = length(x);  
    s = 0;  
    varS = 0;  
    UF = zeros(1, n);  
  
    % 初始化  
    for k = 2:n  
        for j = 1:k-1  
            if x(k) > x(j)  
                s = s + 1;  
            elseif x(k) < x(j)  
                s = s - 1;  
            end  
        end  
        UF(k) = (s - k * (k - 1) / 2) / sqrt(k * (k - 1) * (2 * k + 5) / 18);  
        varS = varS + s^2;  
        s = 0;  
    end  
  
    % UB的计算需要反向序列  
    UB = zeros(1, n);  
    if nargout > 2  
        % 计算方差  
        varS = (n * (n - 1) * (2 * n + 5) / 18) - varS;  
        if varS == 0  
            varS = 1; % 避免除以零  
        end  
          
        % 反向序列  
        y = fliplr(x);  
        for k = 2:n  
            UB(k) = -UF(n+1-k); % 利用正向序列的结果  
            % 注意:这里直接利用UF的结果进行转换,实际上UB的计算需要完整重复上述过程,  
            % 但对于标准Mann-Kendall测试,通常只关注UF,UB用于确定突变点  
        end  
          
        % 标准化UB  
        UB = UB / sqrt(varS / 18);  
    end  
  
    % 注意:此函数不直接计算p值,通常需要查表或使用统计软件  
    pValue = NaN; % 占位符  
end

注意

  1. 上述代码主要计算了UF统计量,并可选地计算了UB统计量(虽然UB的计算是基于UF的简化,实际中可能需要独立计算)。
  2. p值的计算通常不是直接通过M-K统计量本身进行的,而是需要参考相应的统计表或使用专门的统计软件/函数。
  3. 对于趋势的显著性判断,通常需要将UF或UB的值与一定的显著性水平(如α=0.05对应的临界值)进行比较。
  4. 在实际应用中,你可能还需要对时间序列进行预处理,如去趋势、季节性调整等,以提高M-K检验的准确性。

六、结论

       M-K检验法作为一种非参数的假设检验方法,在气候、水文、环境等领域的时间序列数据分析中发挥着重要作用。其优点在于不依赖于数据的具体分布形式且抗干扰能力强,但也存在无法确定趋势形式和对周期性变化不敏感的局限性。在实际应用中,应根据具体研究目的和数据特点选择合适的分析方法。

 结语 

成功是优点的发挥

失败是缺点的累积

!!!


http://www.kler.cn/a/292313.html

相关文章:

  • 【数据结构】线性表——栈与队列
  • Python读写Excel的全面教程
  • postgresql.conf与postgresql.auto.conf区别
  • 微信小程序自定义顶部导航栏(适配各种机型)
  • 删库跑路,启动!
  • Vulnhub靶场案例渗透[8]- HackableII
  • 基于 BiLSTM+Attention 实现降雨预测多变量时序分类——明日是否降雨
  • 深入剖析工厂模式与策略模式的核心差异
  • 鸿蒙(API 12 Beta6版)图形【AR物体摆放】 AR引擎服务
  • Python面向对象(14成员成员修饰符)
  • 【前端面试】Webpack、Rollup 和 Gulp 构建工具了解
  • WCDMA 辅同步信号S_SCH介绍,MATLAB实现
  • 深入理解Docker核心原理:全面解析Docker Client
  • 多线程的简单了解——多客户端链接
  • k8s工作负载控制器--Statefulset
  • 【Redis】事务主从复制哨兵集群缓存分布式锁
  • 【Linux 从基础到进阶】MongoDB 数据库安装与调优
  • 无人机螺旋桨常见材料!!!
  • Ascend C算子性能优化实用技巧03——搬运优化
  • leetcode第142题:环形链表 ||(C语言+引申问题全解)
  • ETL数据集成丨SQLServer到Doris的无缝数据同步策略
  • 虚拟机苹果系统MacOS中XCode的安装
  • Spring Boot:医疗排班平台的技术支撑
  • 帆软报表使用url访问报表,自定义前端搜索,优化报表展示
  • 查询数据库版本、查询数据字符集sql
  • 深度学习-用神经网络NN实现足球大小球数据分析软件