当前位置: 首页 > article >正文

QNN:基于QNN+example重构之后的yolov8det部署

QNN是高通发布的神经网络推理引擎,是SNPE的升级版,其主要功能是:

完成从Pytorch/TensorFlow/Keras/Onnx等神经网络框架到高通计算平台的模型转换;
完成模型的低比特量化(int8),使其能够运行在高通神经网络芯片上;
提供测试工具(qnn-net-run),可以运行网络并保存输出;
提供测试工具(qnn-profile-viewer),可以进行FLOPS、参数量、每一层运行时间等分析;

Qualcomm® AI Engine Direct 架构采用模块化设计,可实现软件中的清晰分离 对于不同的硬件核心/加速器,例如 CPU、GPU 和 DSP,指定为 后端。了解有关 Qualcomm® 的更多信息AI Engine Direct后端此处。

针对不同硬件核心/加速器的 Qualcomm® AI Engine Direct 后端被编译为 与 SDK 一起打包的各个特定于核心的库。

跨 IP 核的统一 API

Qualcomm® 的主要亮点之一AI Engine Direct 是它提供了统一的 API 来委托操作 例如跨所有硬件加速器后端的图形创建和执行。这允许用户 将 Qualcomm® AI Engine Direct 视为硬件抽象 API,并将应用程序轻松移植到不同的内核。

正确的抽象级别

Qualcomm® AI Engine Direct API 旨在支持高效的执行模型 具有内部处理的图形优化等功能。 但与此同时,它遗漏了更广泛的功能,例如模型解析和 网络分区到更高级别的框架。

组合的灵活性

借助 Qualcomm® AI Engine Direct,用户可以在后端提供的功能之间进行适当的权衡 以及库大小和内存利用率方面的占用空间。这提供了以下能力: 构建 Qualcomm® AI Engine Direct 操作包,仅包含服务一组模型所需的操作 以用例为目标1。有了这个,用户可以创建灵活的应用程序 内存占用低,适合各种硬件产品。

可扩展的运营支持

Qualcomm® AI Engine Direct 还为客户集成自定义操作以无缝协作提供支持 内置操作。

提高执行性能

凭借优化的网络加载和异步执行支持 Qualcomm®AI Engine Direct 可提供高度 机器学习框架和应用程序加载和执行网络图的高效接口 他们想要的硬件加速器。。

我们主要将QNN重新封装一下完成合适与自己的代码结构与逻辑。因为本身的QNN demo看着太复杂了。

重构之后如下图所示:

输出结果:


http://www.kler.cn/a/292632.html

相关文章:

  • web实操5——http数据详解,request对象功能
  • 城市轨道交通数据可视化的应用与优势
  • ⾃动化运维利器Ansible-基础
  • Java结合ElasticSearch根据查询关键字,高亮显示全文数据。
  • 如何使用 Web Scraper API 高效采集 Facebook 用户帖子信息
  • 前端,location.reload刷新页面
  • 经验笔记:NoSQL数据库及其缓存方法实践
  • 什么是单片机?为什么要学习单片机?
  • 【文献及模型、制图分享】县域城乡融合发展对乡村旅游地实现共同富裕的影响机制——以长三角地区60个典型县为例
  • Qt/QML学习-CircularGauge
  • Python函数的编写
  • 上海市计算机学会竞赛平台2024年8月月赛丙组调和级数
  • CMU 10423 Generative AI:HW0
  • 【计算机网络】socket编程 几个网络命令
  • 【机器学习】Boosting与Bagging算法
  • 哈希扩展(位图与布隆过滤器)
  • React基础教程(09):react的属性介绍(props)
  • 万界星空科技MES:企业实现数字化转型的护航者
  • SpringCloud之CircuitBreaker
  • 江协科技stm32————10-5 硬件I2C读写MPU6050
  • 宝扬笔记本电脑重做win10系统教程
  • 2024国赛数学建模C题完整论文:农作物的种植策略
  • 智 能 合 约
  • 【css】获取最后一个li进行样式特殊处理
  • 企微获客链接 中文乱码问题处理
  • 高德地图根据经纬度获取详细地址