当前位置: 首页 > article >正文

【2024数模国赛赛题思路公开】国赛E题思路丨附可运行代码丨无偿自提

2024年国赛E题解题思路

问题一

【题目分析】

  • 任务是将一天分成若干时段,根据经中路-纬中路交叉口的车流量差异,估计每个时段各个相位的车流量。

思路:

  1. 数据处理与预处理: 根据附件2的数据,提取经中路-纬中路交叉口的车流数据。对车流数据按时间进行整理,以便识别高峰和低谷时段。
  2. 时段划分: 使用聚类算法(如K-means)将一天划分为不同的时段,根据车流量的变化确定不同的时段。
  3. 流量估计: 在每个时段内,根据四个方向(北-南、南-北、东-西、西-东)进行流量估计。要考虑直行、左转、右转的流量估计,可以基于车辆的进入和离开位置进行推断。

【解题思路】

为了回答第一问,我们需要将一天分成若干个时段,并估计经中路-纬中路交叉口在不同时段各个相位的车流量。以下是详细的建模过程,包括数据处理、时段划分、流量估计,以及引入智能优化算法的步骤。

1. 数据预处理

首先从附件2中提取经中路-纬中路交叉口的车流数据。数据包括车辆经过的时间、方向、位置等信息。需要对这些数据进行清洗和整理:

  1. 数据清洗: 去除重复数据,处理缺失值。
  2. 时间序列构建: 将车流数据按时间顺序排列,构建时间序列,便于后续分析。

2. 时段划分

将一天分为若干个时段,使得每个时段内的车流量变化较小。为实现这一目标,可以使用聚类算法,如K-means进行时段划分。步骤如下:

特征提取: 计算每个小时或每半小时的车流量作为特征向量x=(x1,x2,...,xn),其中xi表示第i个时段的车流量。

聚类分析: 使用K-means算法将特征向量聚类为 k 个类别,每个类别代表一个时段。选择合适的k  值可以通过肘部法则或轮廓系数进行确定。

K-means目标函数:

其中,Ci 是第i个聚类,μi 是 Ci 的中心。

3. 车流量估计

在每个时段内,我们需要估计各个相位(四个方向直行、左转、右转)的车流量。由于附件2中的数据无法直接区分车辆的转向行为,我们可以利用以下步骤进行估计:

  1. 方向流量计算: 对每个方向上的车辆计数,计算其流量:

    2. 转向行为推断: 假设车辆在交叉口的转向比例是已知的(通过历史数据或交通规则推断),则可以估计左转、直行和右转的流量。设转向比例为 ,分别代表左转、直行和右转的比例:

直行流量:

左转流量:

右转流量:

4. 优化算法引入

为提升车流量估计的准确性,可以引入智能优化算法,如粒子群优化(PSO)来优化时段划分和流量估计的参数。

粒子群优化(PSO)步骤:

  1. 初始化: 初始化粒子群,设定粒子的位置和速度,目标是最小化估计误差。
  2. 适应度函数: 设定适应度函数,衡量估计流量与实际流量之间的误差:

适应度函数:

     3. 迭代更新: 更新粒子的速度和位置,使其逐步靠近最优解。速度更新公式:

位置更新公式:

Python参考代码】

import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
from sklearn.cluster import KMeans

# 假设数据已从附件2加载,数据包括车辆的拍摄时间和方向
# 加载数据
data = pd.read_csv('traffic_data.csv')  # 使用实际数据文件路径

# 数据预处理
data['timestamp'] = pd.to_datetime(data['timestamp'])  # 将时间列转换为datetime格式
data['hour'] = data['timestamp'].dt.hour  # 提取小时
data['minute'] = data['timestamp'].dt.minute  # 提取分钟

# 按照时间对车流量进行统计
traffic_counts = data.groupby(['hour', 'minute', 'direction']).size().reset_index(name='count')

# 展示部分数据
print(traffic_counts.head())

# 特征提取:将每小时和分钟的车流量作为特征向量
traffic_counts['time'] = traffic_counts['hour'] * 60 + traffic_counts['minute']
traffic_features = traffic_counts.pivot(index='time', columns='direction', values='count').fillna(0)

# 使用K-means进行时段划分
kmeans = KMeans(n_clusters=4, random_state=42)  # 设定要分成的时段数目,例如4个时段
traffic_counts['time_period'] = kmeans.fit_predict(traffic_features)

# 将时段结果合并回原始数据
traffic_counts = traffic_counts.merge(traffic_features, left_on='time', right_index=True)

# 可视化时段划分结果
plt.figure(figsize=(15, 6))
plt.scatter(traffic_counts['time'], traffic_counts['count'], c=traffic_counts['time_period'], cmap='viridis')
plt.colorbar(label='Time Period')
plt.xlabel('Time (minutes from midnight)')
plt.ylabel('Traffic Count')
plt.title('Time Periods Segmentation by Traffic Flow')
plt.grid(True)
plt.show()

# 假设直行、左转、右转的比例已知
alpha = 0.3  # 左转比例
beta = 0.5   # 直行比例
gamma = 0.2  # 右转比例

# 计算每个时段的各个相位的车流量
traffic_counts['straight'] = beta * traffic_counts['count']
traffic_counts['left_turn'] = alpha * traffic_counts['count']
traffic_counts['right_turn'] = gamma * traffic_counts['count']

# 按时段汇总车流量
periodic_flow = traffic_counts.groupby('time_period').agg({
    'straight': 'sum',
    'left_turn': 'sum',
    'right_turn': 'sum'
}).reset_index()

# 可视化车流量估计结果
plt.figure(figsize=(15, 6))
plt.plot(periodic_flow['time_period'], periodic_flow['straight'], label='Straight', marker='o')
plt.plot(periodic_flow['time_period'], periodic_flow['left_turn'], label='Left Turn', marker='o')
plt.plot(periodic_flow['time_period'], periodic_flow['right_turn'], label='Right Turn', marker='o')
plt.xlabel('Time Period')
plt.ylabel('Traffic Flow (vehicles)')
plt.title('Estimated Traffic Flow for Each Time Period')
plt.legend()
plt.grid(True)
plt.show()

http://www.kler.cn/a/293361.html

相关文章:

  • WordPress 6.7 “Rollins”发布
  • apache2配置多站点
  • 微服务day07
  • 如何用C#和Aspose.PDF实现PDF转Word工具
  • Android Framework AMS(16)进程管理
  • 网页版五子棋——对战模块(服务器端开发②)
  • CRUD的最佳实践,联动前后端,包含微信小程序,API,HTML等(三)
  • Kubernetes--服务发布(Service、Ingress)
  • ubuntu24.04 为什么扬声器没有声音,但是戴上耳机有声音
  • Docker 配置国内镜像源
  • SpringCloud:构建分布式系统的利器
  • 【全网首发】2024数学建模国赛C题39页word版成品论文【附带py+matlab双版本解题代码+可视化图表】
  • 深度学习基础案例4--构建CNN卷积神经网络实现对猴痘病的识别(测试集准确率86.5%)
  • 【解决bug之路】npm install node-sass(^4.14.1)连环报错解决!!!(Windows)
  • Python 语法糖:让编程更简单
  • redis的持久化RDB和AOF
  • Qt 实战(10)MVD | 10.1、MVD机制详解
  • RabbitMQ 基础架构流程 数据隔离 创建用户
  • 利用深度学习实现验证码识别-2-使用Python导出ONNX模型并在Java中调用实现验证码识别
  • 对极约束及其性质 —— 公式详细推导
  • ElementUI2.x El-Select组件 处理使用远程查找时下拉箭头丢失问题
  • 用 CSS 实现太阳系运行效果
  • XSS 漏洞检测与利用全解析:守护网络安全的关键洞察
  • 微信小程序请求数据接口封装
  • MutationObserver小试牛刀
  • 计算机基础知识-2