当前位置: 首页 > article >正文

手撕HashMap源码

终于通过不屑努力,把源码中的重要部分全都看完了,每一行代码都看明白了,还写了注释



import java.lang.reflect.ParameterizedType;
import java.lang.reflect.Type;
import java.util.*;
import java.util.function.Consumer;
import java.util.function.Function;

public class MyHashMap<K, V> extends AbstractMap<K, V> implements Map<K, V> {
    // 默认初始容量,必须是2的次幂
    static final int DEFAULT_INITIAL_CAPACITY = 1 << 4;
    // 最大容量,不能超过这个值
    static final int MAXIMUM_CAPACITY = 1 << 30;
    // 默认负载因子
    static final float DEFAULT_LOAD_FACTOR = 0.75f;
    // 链表阈值,超过这个值,需要扩容
    static final int TREEIFY_THRESHOLD = 8;
    // 红黑树转换为链表的阈值
    static final int UNTREEIFY_THRESHOLD = 6;
    // 哈希表的大小至少超过该值才将链表转换为红黑树
    static final int MIN_TREEIFY_CAPACITY = 64;

    static class Node<K, V> implements Map.Entry<K, V> {
        // 哈希值
        final int hash;
        // 键
        final K key;
        // 值
        V value;
        // 下一个节点
        Node<K, V> next;

        Node(int hash, K key, V value, Node<K, V> next) {
            this.hash = hash;
            this.key = key;
            this.value = value;
            this.next = next;
        }

        @Override
        public K getKey() {
            return key;
        }

        @Override
        public V getValue() {
            return value;
        }

        @Override
        public V setValue(V value) {
            V oldValue = this.value;
            this.value = value;
            return oldValue;
        }

        @Override
        public boolean equals(Object o) {
            // 判断是否是同一个对象
            if (this == o)
                return true;
            // 判断是否是Map.Entry类
            if (o instanceof Map.Entry) {
                // 将对象转换为Map.Entry
                Map.Entry<?, ?> e = (Map.Entry<?, ?>) o;
                if (Objects.equals(key, e.getKey()) && Objects.equals(value, e.getValue())) {
                    return true;
                }
            }
            return false;
        }


    }

    static final int hash(Object key) {
        if (key == null)
            return 0;
        int hash = key.hashCode();
        hash = hash ^ (hash >>> 16);
        return hash;
    }

    static Class<?> comparableClassFor(Object x) {
        if (x instanceof Comparable) {
            Class<?> c;
            Type[] ts, as;
            Type t;
            ParameterizedType p;
            if ((c = x.getClass()) == String.class) // bypass checks
                return c;
            if ((ts = c.getGenericInterfaces()) != null) {
                for (int i = 0; i < ts.length; ++i) {
                    if (((t = ts[i]) instanceof ParameterizedType) &&
                            ((p = (ParameterizedType) t).getRawType() ==
                                    Comparable.class) &&
                            (as = p.getActualTypeArguments()) != null &&
                            as.length == 1 && as[0] == c) // type arg is c
                        return c;
                }
            }
        }
        return null;
    }

    static int compareComparables(Class<?> kc, Object k, Object x) {
        return (x == null || x.getClass() != kc ? 0 :
                ((Comparable) k).compareTo(x));
    }

    static final int tableSizeFor(int cap) {
        int n = cap - 1;
        n |= n >>> 1;
        n |= n >>> 2;
        n |= n >>> 4;
        n |= n >>> 8;
        n |= n >>> 16;
        return (n < 0) ? 1 : (n >= MAXIMUM_CAPACITY) ? MAXIMUM_CAPACITY : n + 1;
    }

    @Override
    public Set<Entry<K, V>> entrySet() {
        return null;
    }

    // 哈希表,第一次使用的时候才会加载,必要时会重新设置大小
    // 长度总是2的次幂
    transient Node<K, V>[] table;
    // 键值对集合
    transient Set<Entry<K, V>> entrySet;
    // 键值对数量
    transient int size;

    // modCount
    transient int modCount;

    // 当键值对数量达到阈值时,会进行扩容,这个阈值 = 容量 * 加载因子
    int threshold;
    // 加载因子
    final float loadFactor;

    public MyHashMap(int initialCapacity, float loadFactor) {
        // 初始容量不能小于0
        if (initialCapacity < 0)
            throw new IllegalArgumentException("Illegal initial capacity: " + initialCapacity);
        // 初始容量不能大于最大容量
        if (initialCapacity > MAXIMUM_CAPACITY)
            initialCapacity = MAXIMUM_CAPACITY;
        // 加载因子不能小于 0
        // 加载因子不能为NaN
        if (loadFactor <= 0 || Float.isNaN(loadFactor)) {
            throw new IllegalArgumentException("Illegal load factor: " + loadFactor);
        }
        this.loadFactor = loadFactor;

        this.threshold = tableSizeFor(initialCapacity);

    }

    public MyHashMap(int initialCapacity) {
        this(initialCapacity, DEFAULT_LOAD_FACTOR);
    }

    public MyHashMap() {
        this.loadFactor = DEFAULT_LOAD_FACTOR; // all other fields defaulted
    }

    // 将传入的map中的键值对添加到哈希表中
    public MyHashMap(Map<? extends K, ? extends V> m) {
        this.loadFactor = DEFAULT_LOAD_FACTOR;
        putMapEntries(m, false);
    }

    final void putMapEntries(Map<? extends K, ? extends V> m, boolean evict) {
        int s = m.size();
        if (s > 0) {
            // hash表还没有初始化
            if (table == null) {
                // 计算哈希表的大小
                float ft = ((float) s / loadFactor) + 1.0F;
                int t = MAXIMUM_CAPACITY;
                if (ft < (float) MAXIMUM_CAPACITY) {
                    t = (int) ft;
                }
                if (t > threshold)
                    threshold = tableSizeFor(t);
            } else if (s > threshold)
                resize();
            for (Map.Entry<? extends K, ? extends V> e : m.entrySet()) {
                K key = e.getKey();
                V value = e.getValue();
                putVal(hash(key), key, value, false, evict);
            }
        }
    }

    /**
     * 获取键值对数量
     *
     * @return
     */
    public int size() {
        return size;
    }

    public boolean isEmpty() {
        return size == 0;
    }

    public V get(Object key) {
        Node<K, V> e;
        return (e = getNode(hash(key), key)) == null ? null : e.value;
    }

    final Node<K, V> getNode(int hash, Object key) {
        Node<K, V>[] tab;
        Node<K, V> first, e;
        int n;
        K k;
        // 经典三步走:
        // 1.看桶是否为null
        // 2.判断链表头和key是否相等
        // 3.遍历链表(如果是红黑树去遍历红黑树)
        if ((tab = table) != null && (n = tab.length) > 0 &&
                (first = tab[(n - 1) & hash]) != null) {
            if (first.hash == hash && // always check first node
                    ((k = first.key) == key || (key != null && key.equals(k))))
                return first;
            if ((e = first.next) != null) {
                if (first instanceof TreeNode)
                    return ((TreeNode<K, V>) first).getTreeNode(hash, key);
                do {
                    if (e.hash == hash &&
                            ((k = e.key) == key || (key != null && key.equals(k))))
                        return e;
                } while ((e = e.next) != null);
            }
        }
        return null;
    }

    final Node<K, V>[] resize() {
        Node<K, V>[] oldTable = table;
        // 获取旧数组长度
        int oldCapacity = (oldTable == null) ? 0 : oldTable.length;
        // 获取旧数组扩容阈值
        int oldThreshold = threshold;
        int newCapacity = 0;
        int newThreshold = 0;
        // 1.如果旧数组长度>0,那就扩容
        if (oldCapacity > 0) {
            // 2.容量大于最大容量,则直接返回
            if (oldCapacity >= MAXIMUM_CAPACITY) {
                threshold = Integer.MAX_VALUE;
                return oldTable;
            } else {
                // 3.旧数组容量小于最大容量,则扩容。直接翻倍
                if (oldCapacity >= DEFAULT_INITIAL_CAPACITY &&
                        (oldCapacity << 1) < MAXIMUM_CAPACITY) {
                    newCapacity = oldCapacity << 1;
                    newThreshold = oldThreshold << 1;
                }
                // 4.旧数组容量太大,无法翻倍
            }
            // 5.此时 oldCapacity == 0;
        } else if (oldThreshold > 0) {
            newCapacity = oldThreshold;
        } else {
            //  oldCapacity == 0;
            // oldThreshold == 0
            // newCapacity = 16,newThreshold = 12
            newCapacity = DEFAULT_INITIAL_CAPACITY;
            newThreshold = (int) (DEFAULT_LOAD_FACTOR * DEFAULT_INITIAL_CAPACITY);
        }
        // newThreshold 说明没有更新阈值,自己计算新的阈值
        // 可能是由于情况4,情况5
        if (newThreshold == 0) {
            float ft = (float) newCapacity * loadFactor;
            newThreshold = (newCapacity < MAXIMUM_CAPACITY && ft < (float) MAXIMUM_CAPACITY ?
                    (int) ft : Integer.MAX_VALUE);
        }
        threshold = newThreshold;
        Node<K, V>[] newTable = (Node<K, V>[]) new Node[newCapacity];
        table = newTable;
        if (oldTable != null) {
            for (int j = 0; j < oldCapacity; j++) {
                Node<K, V> e = oldTable[j];
                if (e == null)
                    continue;
                oldTable[j] = null;
                if (e.next == null) {
                    // 该捅只有一个元素,讲该元素赋值到新的捅中
                    newTable[e.hash & (newCapacity - 1)] = e;
                } else if (e instanceof TreeNode) {
                    ((TreeNode<K, V>) e).split(this, newTable, j, oldCapacity);
                } else {
                    // 原来桶上的链表,讲他们分成两个链表,放在新链表的两个桶上
                    // 举个例子,oldCapacity = 16
                    // 此时 j = 1
                    // 假设,现在链表上有 1、17、33、49这些元素
                    // 那么需要讲他们重新找到新桶,放在新桶的位置上
                    // 那么只会有两种结果,一种是放在1桶上,一种是放在17桶上
                    // 为啥源代码中会让e.hash & oldCap 是否等于0来分开链表
                    // 我们看下这些元素的二进制
                    // 1: 000001
                    // 17:010001
                    // 33:100001
                    // 49:110001
                    // 而16:010000
                    // 所以说只要二进制中倒数五位是1,那就说明是放在17桶上.否则就是放在1桶上
                    Node<K, V> loHead = null, loTail = null;
                    Node<K, V> hiHead = null, hiTail = null;
                    Node<K, V> next;
                    do {
                        next = e.next;
                        if ((e.hash & oldCapacity) == 0) {
                            if (loTail == null)
                                loHead = e;
                            else
                                loTail.next = e;
                            loTail = e;
                        } else {
                            if (hiTail == null)
                                hiHead = e;
                            else
                                hiTail.next = e;
                            hiTail = e;
                        }
                    } while ((e = next) != null);
                    if (loTail != null) {
                        loTail.next = null;
                        newTable[j] = loHead;
                    }
                    if (hiTail != null) {
                        hiTail.next = null;
                        newTable[j + oldCapacity] = hiHead;
                    }
                }

            }
        }
        return newTable;
    }

    public V put(K key, V value) {
        return putVal(hash(key), key, value, false, true);
    }

    final V putVal(int hash, K key, V value, boolean onlyIfAbsent,
                   boolean evict) {
        Node<K, V>[] tab;
        Node<K, V> p;
        int len, index;
        // 如果table为空或者长度为0,表示还没有初始化,需要初始化
        if ((tab = table) == null || (len = tab.length) == 0)
            len = (tab = resize()).length;
        // 计算keyhash后对应的捅索引,看是否为空
        if ((p = tab[index = (len - 1) & hash]) == null)
            tab[index] = newNode(hash, key, value, null);
        else {
            // 如果捅不为空,则需要遍历捅
            // 检测key是否存在
            Node<K, V> e;
            K k;
            // 如果第一个点就是要找的key
            if (p.hash == hash && compareKey(key, p.key))
                e = p;
                // 如果第一个点不是要找的key,判断是红黑树吗
            else if (p instanceof TreeNode)
                e = ((TreeNode<K, V>) p).putTreeVal(this, tab, hash, key, value);
            else {
                // 不是红黑树,那就是链表
                for (int binCount = 0; ; ++binCount) {
                    // 找到最后都没找到key
                    if ((e = p.next) == null) {
                        // 在链表尾部添加一个节点
                        p.next = newNode(hash, key, value, null);
                        // 查看链表个数是否大于等于8
                        if (binCount >= TREEIFY_THRESHOLD - 1) // -1 for 1st
                            // 转换为红黑树
                            treeifyBin(tab, hash);
                        break;
                    }
                    // 如果找到了,直接退出查找
                    if (e.hash == hash && compareKey(key, e.key))
                        break;
                    p = e;
                }
            }
            // 表示存在要找的key
            if (e != null) { // existing mapping for key
                V oldValue = e.value;
                if (!onlyIfAbsent || oldValue == null)
                    e.value = value;
//                afterNodeAccess(e);
                return oldValue;
            }
        }
        ++modCount;
        // 如果元素个数大于阈值,则扩容
        if (++size > threshold)
            resize();

//        afterNodeInsertion(evict);
        return null;
    }

    final void treeifyBin(Node<K, V>[] tab, int hash) {
        int len, index;
        Node<K, V> e;
        // 如果链表的大小超过8,但是哈希表的大小小于64,会进行扩容,等到满足了才会转换成红黑树
        if (tab == null || (len = tab.length) < MIN_TREEIFY_CAPACITY)
            resize();
        else if ((e = tab[index = (len - 1) & hash]) != null) {
            TreeNode<K, V> head = null, tail = null;
            do {
                // 尾插法,先将链表中的所有节点转换为树节点
                TreeNode<K, V> p = replacementTreeNode(e, null);
                if (tail == null)
                    head = p;
                else {
                    p.prev = tail;
                    tail.next = p;
                }
                tail = p;
            } while ((e = e.next) != null);
            // 转换成红黑树
            if ((tab[index] = head) != null)
                head.treeify(tab);
        }
    }

    public void putAll(Map<? extends K, ? extends V> m) {
        putMapEntries(m, true);
    }

    final boolean compareKey(K k1, K k2) {
        return Objects.equals(k1, k2);
    }

    @Override
    public V remove(Object key) {
        Node<K, V> e;
        e = removeNode(hash(key), key, null, false, true);
        if (e == null)
            return null;
        return e.value;
    }

    @Override
    public boolean replace(K key, V oldValue, V newValue) {
        Node<K, V> e;
        V v;
        if ((e = getNode(hash(key), key)) != null &&
                ((v = e.value) == oldValue || (v != null && v.equals(oldValue)))) {
            e.value = newValue;
            return true;
        }
        return false;
    }

    @Override
    public V replace(K key, V value) {
        Node<K, V> e;
        if ((e = getNode(hash(key), key)) != null) {
            V oldValue = e.value;
            e.value = value;
            return oldValue;
        }
        return null;
    }

    // matchValue : 是否需要比较value
    final Node<K, V> removeNode(int hash, Object key, Object value,
                                boolean matchValue, boolean movable) {
        Node<K, V>[] tab;
        Node<K, V> p;
        int n, index;
        // 判断该key对应的桶是否有元素
        if ((tab = table) != null && (n = tab.length) > 0 && (p = tab[index = (n - 1) & hash]) != null) {
            // 查找到的key对应的node节点
            Node<K, V> node = null;
            Node<K, V> e;
            K k;
            V v;
            // 头节点是不是
            if (p.hash == hash && ((k = p.key) == key || (key != null && key.equals(k)))) {
                node = p;
                // 头节点不是,找下一个节点
            } else if ((e = p.next) != null) {
                // 如果是红黑树的话
                if (p instanceof TreeNode) {
                    node = ((TreeNode<K, V>) p).getTreeNode(hash, key);
                }
                // 不是红黑树
                else {
                    do {
                        if (e.hash == hash && compareKey(e.key, key)) {
                            node = e;
                            break;
                        }
                        p = e;
                    } while ((e = e.next) != null);
                }
            }
            //
            if (node != null && (!matchValue || (v = node.value) == value ||
                    (value != null && value.equals(v)))) {
                // 找到的节点属于红黑树节点,从红黑树中删除
                if (node instanceof TreeNode) {
                    ((TreeNode<K, V>) node).removeTreeNode(this, tab, movable);
                    // node是找到的节点,p是链表头,如果node正好是链表头的话,直接删除头节点
                } else if (node == p) {
                    tab[index] = node.next;
                } else {
                    // 此时p是当node的上一个节点
                    p.next = node.next;
                }

                ++modCount;
                --size;
                return node;
            }
        }
        return null;
    }

    // 删除所有的元素
    public void clear() {
        Node<K, V>[] tab;
        modCount++;
        if ((tab = table) != null && size > 0) {
            size = 0;
            for (int i = 0; i < tab.length; ++i) {
                tab[i] = null;
            }
        }
    }

    public boolean containsValue(Object value) {
        Node<K, V>[] tab;
        V v;
        if ((tab = table) != null && size > 0) {
            for (int i = 0; i < tab.length; i++) {
                for (Node<K, V> e = tab[i]; e != null; e = e.next) {
                    if ((v = e.value) == value || (value != null && value.equals(v))) {
                        return true;
                    }
                }
            }
        }
        return false;
    }

    @Override
    public V getOrDefault(Object key, V defaultValue) {
        Node<K, V> e;
        return (e = getNode(hash(key), key)) == null ? defaultValue : e.value;
    }

    @Override
    public V putIfAbsent(K key, V value) {
        // 当不存在时才添加
        return putVal(hash(key), key, value, true, true);
    }

    // 当不存在时,执行mappingFunction方法,否则返回之前的值
    @Override
    public V computeIfAbsent(K key, Function<? super K, ? extends V> mappingFunction) {
        if (mappingFunction == null)
            throw new NullPointerException();
        int hash = hash(key);
        Node<K, V>[] tab;
        Node<K, V> first; // 头节点
        int n, i; // n:tab长度,i:hash & n - 1
        int binCount = 0;
        TreeNode<K, V> t = null; // 红黑树的头节点
        Node<K, V> old = null; // 之前的值
        // 当该key对应的桶为null,重新resize
        if (size > threshold || (tab = table) == null || (n = tab.length) == 0) {
            n = (tab = resize()).length;
        }
        if ((first = tab[i = (n - 1) & hash]) != null) {
            if (first instanceof TreeNode) {
                old = (t = (TreeNode<K, V>) first).getTreeNode(hash, key);
            } else {
                Node<K, V> e = first;
                K k;
                // 遍历链表
                do {
                    if (e.hash == hash &&
                            ((k = e.key) == key) || (key != null && key.equals(k))) {
                        old = e;
                        break;
                    }
                    ++binCount;
                } while ((e = e.next) != null);
            }
            V oldValue;
            if (old != null && (oldValue = old.value) != null) {
                return oldValue;
            }
        }

        // 走到这里说明该key在hash表中不存在或者对应的value不存在

        V v = mappingFunction.apply(key);
        if (v == null) {
            return null;
            // v!=null 并且 old !=null, 说明该key已经存在,但是 vlaue == null
        } else if (old != null) {
            old.value = v;
            return v;
        }
        // 表示该key在哈希表中不存在
        // 并且该key对应的桶是红黑树节点,那么就加入到红黑树中
        else if (t != null) {
            t.putTreeVal(this, tab, hash, key, v);
        } else {
            // 该桶是链表节点
            tab[i] = newNode(hash, key, v, first);
            if (binCount >= TREEIFY_THRESHOLD - 1) {
                treeifyBin(tab, hash);
            }
        }
        ++modCount;
        ++size;
        return v;
    }

    TreeNode<K, V> replacementTreeNode(Node<K, V> p, Node<K, V> next) {
        return new TreeNode<>(p.hash, p.key, p.value, next);
    }

    static final class TreeNode<K, V> extends MyLinkedHashMap.Entry<K, V> {

        TreeNode<K, V> parent;  // red-black tree links
        TreeNode<K, V> left;
        TreeNode<K, V> right;
        TreeNode<K, V> prev;    // needed to unlink next upon deletion
        boolean red;

        TreeNode(int hash, K key, V val, Node<K, V> next) {
            super(hash, key, val, next);
        }

        final TreeNode<K, V> root() {
            TreeNode<K, V> p = this;
            while (p.parent != null) {
                p = p.parent;
            }
            return p;
        }

        // 将链表转换为红黑树
        final void treeify(Node<K, V>[] tab) {
            TreeNode<K, V> root = null;
            for (TreeNode<K, V> x = this, next; x != null; x = next) {
                next = (TreeNode<K, V>) x.next;
                x.left = x.right = null;
                // 如果根节点为空,则直接作为根节点
                if (root == null) {
                    x.parent = null;
                    x.red = false;
                    root = x;
                } else {
                    // 根节点不为空,则需要找到该节点在红黑树中的位置
                    // 找到该key在红黑树中插入的位置
                    K k = x.key;
                    int h = x.hash;
                    Class<?> kc = null;
                    TreeNode<K, V> p = root;
                    while (true) {
                        // 向左还是向右 -1 表示向左, 1表示向右
                        int dir;
                        int ph = p.hash;
                        K pk = p.key;
                        // 如果hash值小于当前节点的hash值,则向左子树查找
                        if (h < ph) {
                            dir = -1;
                            // 如果hash值大于当前节点的hash值,则向右子树查找
                        } else if (h > ph) {
                            dir = 1;
                            // 如果hash值等于当前节点的hash值,则比较key
                        } else if ((kc == null &&
                                (kc = comparableClassFor(k)) == null) ||
                                (dir = compareComparables(kc, k, pk)) == 0)
                            dir = tieBreakOrder(k, pk);

                        TreeNode<K, V> xp = p;
                        if (dir <= 0) {
                            p = p.left;
                        } else {
                            p = p.right;
                        }
                        if (p == null) {
                            x.parent = xp;
                            if (dir <= 0) {
                                xp.left = x;
                            } else {
                                xp.right = x;
                            }
                            root = balanceInsertion(root, x);
                            break;
                        }
                    }
                }
            }
            moveRootToFront(tab, root);
        }

        // 红黑树转换为列表
        final Node<K, V> untreeify(MyHashMap<K, V> map) {
            Node<K, V> head = null, tail = null;
            // 这里我保证是红黑树的根节点
            Node<K, V> q = root();
            while (q != null) {
                Node<K, V> p = map.replacementNode(q, null);
                if (tail == null)
                    head = p;
                else
                    tail.next = p;
                tail = p;
                q = q.next;
            }
            return head;
        }

        // 最终裁决方法
        // 1.先比较a,b的类名字符串,看返回值是不是0
        // 2.仍然返回0的话,调用System.identityHashCode去比较
        //	System.identityHashCode会强制调用Object.hashCode()
        static int tieBreakOrder(Object a, Object b) {
            int d;
            if (a == null || b == null ||
                    (d = a.getClass().getName().
                            compareTo(b.getClass().getName())) == 0)
                d = (System.identityHashCode(a) <= System.identityHashCode(b) ?
                        -1 : 1);
            return d;
        }

        final TreeNode<K, V> putTreeVal(MyHashMap<K, V> map, Node<K, V>[] tab,
                                        int h, K k, V v) {
            Class<?> kc = null;
            // 是否找到key
            boolean searched = false;
            // 找到该红黑树的根节点
            TreeNode<K, V> root = root();
            TreeNode<K, V> p = root;
            while (true) {
                int dir;
                int ph = p.hash;
                K pk = p.key;
                if (h < ph) {
                    dir = -1;
                } else if (h > ph) {
                    dir = 1;
                } else if (pk == k || (k != null && k.equals(pk))) {
                    return p;
                } else if ((kc == null &&
                        (kc = comparableClassFor(k)) == null) ||
                        (dir = compareComparables(kc, k, pk)) == 0) {

                    if (!searched) {
                        TreeNode<K, V> q, ch;
                        searched = true;
                        ch = p.left;
                        // 从左子树中找
                        if (ch != null && (q = ch.find(h, k, kc)) != null) {
                            return q;
                        }
                        ch = p.right;
                        // 从右子树中找
                        if (ch != null && (q = ch.find(h, k, kc)) != null) {
                            return q;
                        }
                    }
                    dir = tieBreakOrder(k, pk);
                }

                TreeNode<K, V> xp = p;
                if (dir <= 0)
                    p = p.left;
                else
                    p = p.right;
                if (p == null) {
                    Node<K, V> xpn = xp.next;
                    TreeNode<K, V> x = map.newTreeNode(h, k, v, xpn);
                    if (dir <= 0)
                        xp.left = x;
                    else
                        xp.right = x;
                    xp.next = x;
                    x.parent = xp;
                    x.prev = xp;
                    if (xpn != null) {
                        ((TreeNode<K, V>) xpn).prev = x;
                    }
                    root = balanceInsertion(root, x);
                    moveRootToFront(tab, root);
                    return null;
                }
            }
        }

        final TreeNode<K, V> find(int h, Object k, Class<?> kc) {
            TreeNode<K, V> p = this;
            do {
                int ph, dir;
                K pk;
                TreeNode<K, V> pl = p.left, pr = p.right, q;
                // 比较hash值
                // 给定hash小于当前节点的hash值,则向左子树查找
                if ((ph = p.hash) > h)
                    p = pl;
                    // 给定hash大于当前节点的hash值,则向右子树查找
                else if (ph < h)
                    p = pr;
                    // 如果hash相等,则比较key,如果key也相等,那直接返回
                else if ((pk = p.key) == k || (k != null && k.equals(pk)))
                    return p;
                    // 如果hash相等,但是key不相等,说明还需要继续往下找
                    // 这个节点可能在左子树也可能在右子树
                    // 如果当前节点的左子树为空,则向右子树查找
                else if (pl == null)
                    p = pr;
                else if (pr == null)
                    p = pl;
                    // 左子树和右子树都不为空
                    // 看这个插入的类是不是可比较的
                    // 如果不是
                else if ((kc != null ||
                        (kc = comparableClassFor(k)) != null) &&
                        (dir = compareComparables(kc, k, pk)) != 0)
                    p = (dir < 0) ? pl : pr;
                    // 如果k是不可比较类型,那这里有什么作用呢?
                    // TODO: 待补充
                else if ((q = pr.find(h, k, kc)) != null)
                    return q;
                    // 如果确定不了,那就从左子树开始找
                else
                    p = pl;
            } while (p != null);
            return null;
        }

        final TreeNode<K, V> getTreeNode(int h, Object k) {
            TreeNode<K, V> p = root();
            return p.find(h, k, null);
        }

        static <K, V> void moveRootToFront(Node<K, V>[] tab, TreeNode<K, V> root) {
            if (root == null || tab == null || tab.length == 0)
                return;
            int len = tab.length;
            int index = root.hash & (len - 1);
            TreeNode<K, V> first = (TreeNode<K, V>) tab[index];
            // 如果根节点不是第一个节点,则需要将根节点放到链表第一个位置
            if (root != first) {
                tab[index] = root;
                TreeNode<K, V> rp = root.prev;
                TreeNode<K, V> rn = (TreeNode<K, V>) root.next;
                if (rn != null)
                    rn.prev = rp;
                if (rp != null)
                    rp.next = rn;
                if (first != null)
                    first.prev = root;
                root.next = first;
                root.prev = null;
            }
        }

        final void split(MyHashMap<K, V> map, Node<K, V>[] tab, int index, int bit) {
            // bit : oldCapacity
            TreeNode<K, V> b = this;
            TreeNode<K, V> loHead = null, loTail = null;
            TreeNode<K, V> hiHead = null, hiTail = null;
            int lc = 0, hc = 0;
            for (TreeNode<K, V> e = b, next; e != null; e = next) {
                next = (TreeNode<K, V>) e.next;
                e.next = null;
                if ((e.hash & bit) == 0) {
                    if ((e.prev = loTail) == null) {
                        loHead = e;
                    } else {
                        loTail.next = e;
                    }
                    loTail = e;
                    ++lc;
                } else {
                    if ((e.prev = hiTail) == null) {
                        hiHead = e;
                    } else {
                        hiTail.next = e;
                    }
                    hiTail = e;
                    ++hc;
                }
            }

            if (loHead != null) {
                // 如果链表个数小于等于6,退化成链表
                if (lc <= UNTREEIFY_THRESHOLD) {
                    tab[index] = loHead.untreeify(map);
                } else {
                    tab[index] = loHead;
                    // 如果hiHead != null,说明分成了两个红黑树。
                    // 那么就需要重新构建红黑树
                    if (hiHead != null) {
                        loHead.treeify(tab);
                    }
                }
            }

            if (hiHead != null) {
                if (hc <= UNTREEIFY_THRESHOLD) {
                    tab[index + bit] = hiHead.untreeify(map);
                } else {
                    tab[index + bit] = hiHead;
                    if (loHead != null) {
                        hiHead.treeify(tab);
                    }
                }
            }
        }

        static <K, V> TreeNode<K, V> rotateLeft(TreeNode<K, V> root, TreeNode<K, V> p) {
            if (p == null || p.right == null)
                return root;
            TreeNode<K, V> pp = p.parent; // 父节点
            TreeNode<K, V> pr = p.right; // 右孩子
            TreeNode<K, V> prl = pr.left;// 右孩子的左孩子
            p.right = prl;
            if (prl != null) {
                prl.parent = p;
            }
            pr.parent = pp;
            if (pp == null) {
                root = pr;
                root.red = false;
            } else if (p == pp.left) {
                pp.left = pr;
            } else {
                pp.right = pr;
            }
            pr.left = p;
            p.parent = pr;
            return root;
        }

        static <K, V> TreeNode<K, V> rotateRight(TreeNode<K, V> root, TreeNode<K, V> p) {
            if (p == null || p.left == null)
                return root;

            TreeNode<K, V> pp = p.parent;
            TreeNode<K, V> pl = p.left;
            TreeNode<K, V> plr = pl.left;
            p.left = plr;
            if (plr != null) {
                plr.parent = p;
            }
            // 更新旋转节点的父节点
            pl.parent = pp;
            if (pp == null) {
                root = pl;
                root.red = false;
            } else if (p == pp.left) {
                pp.left = pl;
            } else {
                pp.right = pl;
            }
            pl.right = p;
            p.parent = pl;
            return root;
        }

        static <K, V> TreeNode<K, V> balanceInsertion(TreeNode<K, V> root,
                                                      TreeNode<K, V> x) {
            // x 为插入节点,将其颜色设置为null
            x.red = true;
            TreeNode<K, V> xp, xpp, xppl, xppr;
            while (true) {
                xp = x.parent;
                // 1.如果插入节点的父亲为null,则它是根节点
                // 并将其设置成黑色
                if (xp == null) {
                    x.red = false;
                    return x;
                    // 如果父亲节点为黑色,那么插入一个红色节点不会影响平衡,直接返回
                } else if (!xp.red) {
                    return root;
                } else {
                    // TODO: 如果父亲节点是根节点的话,那不应该是黑色嘛
                    xpp = xp.parent;
                    if (xpp == null) {
                        return root;
                    }
                }
                // 此时父亲肯定是红色
                xppl = xpp.left;
                xppr = xpp.right;
                if (xp == xppl) {
                    if (xppr != null && xppr.red) {
                        xppr.red = false;
                        xp.red = false;
                        xpp.red = true;
                        // 将爷爷节点设置为插入节点,因为爷爷节点变成了红色,
                        // 可能会破坏平衡,所以需要重新走一遍平衡
                        x = xpp;
                    } else {
                        // 到这里,证明它的叔叔节点为空或者为黑色

                        // 如果插入节点是父亲节点的右孩子
                        if (x == xp.right) {
                            // 先将父节点左旋
                            x = xp;
                            root = rotateLeft(root, x);
                            xp = x.parent;
                            xpp = xp == null ? null : xp.parent;
                        }
                        // 如果有父节点
                        if (xp != null) {
                            // 父节点设置成黑色
                            xp.red = false;
                            if (xpp != null) {
                                // 爷爷节点设置成红色
                                xpp.red = true;
                                // 将爷爷节点右旋
                                root = rotateRight(root, xpp);
                            }
                        }
                    }
                } else {
                    if (xppl != null && xppl.red) {
                        xppl.red = false;
                        xp.red = false;
                        xpp.red = true;
                        x = xpp;
                    } else {
                        if (x == xp.left) {
                            x = xp;
                            root = rotateRight(root, x);
                            xp = x.parent;
                            xpp = xp == null ? null : xp.parent;
                        }
                        if (xp != null) {
                            xp.red = false;
                            if (xpp != null) {
                                xpp.red = true;
                                root = rotateLeft(root, xpp);
                            }
                        }
                    }
                }
            }
        }

        final void removeTreeNode(MyHashMap<K, V> map, Node<K, V>[] tab,
                                  boolean movable) {
            /**
             * 链表的处理
             */
            int n;
            // 如果当前哈希表为空直接返回
            if (tab == null || (n = tab.length) == 0)
                return;

            // 计算当前节点在hash表的索引位置
            int index = (n - 1) & hash;
            // fisrt : t头节点
            TreeNode<K, V> first = (TreeNode<K, V>) tab[index];
            // 如果索引位置的红黑树为空
            if (first == null) {
                return;
            }
            // root:根节点
            TreeNode<K, V> root = first;
            // rl : root的左节点
            TreeNode<K, V> rl;
            // succ:节点的后继节点
            TreeNode<K, V> succ = (TreeNode<K, V>) next;
            // pred:节点的前驱节点
            TreeNode<K, V> pred = prev;
            // 如果根节点为空,则当前节点就是头节点,直接删除
            if (pred == null) {
                first = succ;
                tab[index] = succ;
                // 根节点不为空,当前节点为中间某个节点,删除中间节点
            } else {
                // 前驱的后继
                pred.next = succ;
            }
            // 后继的前驱
            if (succ != null) {
                succ.prev = pred;
            }
            // 如果root的父节点不为空,说明该节点并不是真正的红黑树根节点,需要重新查找根节点
            if (root.parent != null) {
                root = root.parent;
            }
            // 通过root节点来判断此红黑树是否太小, 如果是太小了则调用untreeify方法转为链表节点并返回
            // (转链表后就无需再进行下面的红黑树处理)
            // 太小的判定依据:根节点为null,或者根的右节点为null,或者根的左节点为null,或者根的左节点的左节点为null
            // 这里并没有遍历整个红黑树去统计节点数是否小于等于阈值6,而是直接判断这几种情况,
            // 来决定要不要转换为链表,因为这几种情况一般就涵盖了节点数小于6的情况,这样执行效率也会变高
            if (root == null || root.right == null ||
                    (rl = root.left) == null || rl.left == null) {
                tab[index] = first.untreeify(map);  // too small
                return;
            }

            /**
             * 红黑树的处理
             */
            TreeNode<K, V> p = this;
            TreeNode<K, V> pl = left;
            TreeNode<K, V> pr = right;
            // replacement:替换节点
            TreeNode<K, V> replacement;
            if (pl != null && pr != null) {
                // 找到当前节点的后继
                TreeNode<K, V> s = pr;
                TreeNode<K, V> sl = s.left;
                while (sl != null) {
                    s = sl;
                    sl = s.left;
                }
                // 交换p和s的颜色
                boolean c = s.red;
                s.red = p.red;
                p.red = c;
                TreeNode<K, V> sr = s.right;
                TreeNode<K, V> pp = p.parent;
                // 如果p的后继节点s恰好是p的右节点,那说明pr没有左节点
                // 那么就可以直接将pr替换为p
                if (s == pr) {
                    // 先处理p
                    p.parent = s;
                    p.left = null;
                    p.right = sr;
                    if (sr != null) {
                        sr.parent = p;
                    }
                    // 处理s
                    s.right = p;
                    s.left = pl;
                    pl.parent = s;
                    s.parent = pp;
                    if (pp == null) {
                        root = s;
                    } else if (p == pp.left) {
                        pp.left = s;
                    } else {
                        pp.right = s;
                    }
                } else {
                    // 将p和s互换
                    TreeNode<K, V> sp = s.parent;
                    p.parent = sp;
                    if (s == sp.left) {
                        sp.left = p;
                    } else {
                        sp.right = p;
                    }
                    p.left = null;
                    p.right = sr;
                    if (sr != null) {
                        sr.parent = p;
                    }
                    s.parent = pp;
                    if (pp == null) {
                        root = s;
                    } else if (p == pp.left) {
                        pp.left = s;
                    } else {
                        pp.right = s;
                    }
                    s.left = pl;
                    s.right = pr;
                    pr.parent = s;
                }


                // 如果sr不等于null,那需要p和sr替换掉
                if (sr != null) {
                    replacement = sr;
                    // 如果sr等于null,此时p无子树,直接删掉就可以
                } else {
                    replacement = p;
                }

                // 走到这里说明pr为null,pl不为null
            } else if (pl != null) {
                replacement = pl;
                // 走到这里说明pl为null,pr不为null
            } else if (pr != null) {
                replacement = pr;
            }
            // 到这里,说明p的左右节点都为null
            else {
                replacement = p;
            }

            // 删掉当前节点p
            if (replacement != p) {
                TreeNode<K, V> pp = replacement.parent = p.parent;
                // 当p只有一个子树的时候,p的父节点可能为null
                if (pp == null) {
                    root = replacement;
                } else if (p == pp.left) {
                    pp.left = replacement;
                } else {
                    pp.right = replacement;
                }
                // 删掉p节点
                p.left = p.right = p.parent = null;
            }
            // 如果p节点是红色,那不影响树的结构
            TreeNode<K, V> r = p.red ? root : balanceDeletion(root, replacement);

            if (replacement == p) {
                TreeNode<K, V> pp = p.parent;
                p.parent = null;
                if (pp != null) {
                    if (p == pp.left) {
                        pp.left = null;
                    } else {
                        pp.right = null;
                    }
                }
            }
        }

        static <K, V> TreeNode<K, V> balanceDeletion(TreeNode<K, V> root,
                                                     TreeNode<K, V> x) {
            TreeNode<K, V> xp, xpl, xpr;
            while (true) {
                // 如果x为null或者是根节点,说明已经删除完了
                if (x == null || x == root) {
                    return root;
                    // 父节点为null,说明是根节点
                } else if ((xp = x.parent) == null) {
                    x.red = false;
                    return x;
                    // 如果x是红色的,那么直接让它变成黑色的就行了
                    // 因为父节点是黑色的,x节点直接代替他成为黑色的就行了
                    // 这对应情景1.1或情景2
                } else if (x.red) {
                    x.red = false;
                    return root;
                    // x既不是根节点,也不是红色
                    // x是父亲的左节点
                } else if ((xpl = xp.left) == x) {
                    // 此时对应于情景1.2.1,父兄换色,然后对x在进行一次平衡
                    if ((xpr = xp.right) != null && xpr.red) {
                        xpr.red = false;
                        xp.red = true;
                        root = rotateLeft(root, xp);
                        xpr = (xp = x.parent) == null ? null : xp.right;
                    }
                    if (xpr == null) {
                        // TODO: 这里应该不可能出现
                        System.out.println("..........");
                        x = xp;
                    } else {
                        TreeNode<K, V> sl = xpr.left, sr = xpr.right;
                        // 此时xpr只能是黑色
                        // 这里if判断成功的可能条件:
                        // 1.sl == null,sr == null (对应情景1.2.2.3)
                        // 2.sl == null,sr == black (不可能)
                        // 3.sl == black,sr == null (不可能)
                        // 4.sl == black,sr == black (不可能)
                        if ((sr == null || !sr.red) &&
                                (sl == null || !sl.red)) {
                            // 对应情景1.2.2.3
                            xpr.red = true;
                            x = xp;
                        } else {
                            // 进入这里的可能条件
                            // 1.sl == null,sr == red (对应情景1.2.2.1)
                            // 2.sl == red,sr == null (对应情景1.2.2.2)
                            // 3.sl == red,sr == red (对应情景1.2.2.1)
                            // 4.sl == black,sr == red (不存在)
                            // 4.sl == red,sr == black (不存在)

                            // 条件2
                            if (sr == null) {
                                // 情景1.2.2.2
                                sl.red = false;
                                xpr.red = true;
                                root = rotateRight(root, xpr);
                                xpr = (xp = x.parent) == null ? null : xp.right;
                            }
                            // 此时就变成了场景1.2.2.1
                            if (xpr != null) {
                                // 父兄换色
                                xpr.red = xp.red;
                                if ((sr = xpr.right) != null) {
                                    sr.red = false;
                                }
                            }
                            if (xp != null) {
                                xp.red = false;
                                root = rotateLeft(root, xp);
                            }
                            x = root;
                        }
                    }
                } else {
                    // 如果xpl为红色,那xp和xpl的孩子肯定为黑色
                    if (xpl != null && xpl.red) {
                        xpl.red = false;
                        xp.red = true;
                        root = rotateRight(root, xp);
                        xpl = (xp = x.parent) == null ? null : xp.left;
                    }

                    if (xpl == null) {
                        x = xp;
                    } else {
                        TreeNode<K, V> sl = xpl.left, sr = xpl.right;
                        if ((sl == null || !sl.red) && (sr == null || !sr.red)) {
                            xpl.red = true;
                            x = xp;
                        } else {
                            if (sl == null) {
                                sr.red = false;
                                xpl.red = true;
                                root = rotateLeft(root, xpl);
                                xpl = (xp = x.parent) == null ?
                                        null : xp.left;
                            }
                            if (xpl != null) {
                                xpl.red = xp.red;
                                if ((sl = xpl.left) != null)
                                    sl.red = false;
                            }
                            if (xp != null) {
                                xp.red = false;
                                root = rotateRight(root, xp);
                            }
                            x = root;
                        }
                    }
                }
            }
        }
    }


    TreeNode<K, V> newTreeNode(int hash, K key, V value, Node<K, V> next) {
        return new TreeNode<>(hash, key, value, next);
    }

    Node<K, V> replacementNode(Node<K, V> p, Node<K, V> next) {
        return new Node<>(p.hash, p.key, p.value, next);
    }


    Node<K, V> newNode(int hash, K key, V value, Node<K, V> next) {
        return new Node<>(hash, key, value, next);
    }
}




http://www.kler.cn/a/293686.html

相关文章:

  • vue3项目中内嵌vuepress工程两种实现方式
  • vue2.x elementui 固定顶部、左侧菜单与面包屑,自适应 iframe 页面布局
  • 免费HTML模板和CSS样式网站汇总
  • 深入剖析【C++继承】:单一继承与多重继承的策略与实践,解锁代码复用和多态的编程精髓,迈向高级C++编程之旅
  • 从 MySQL 5.7 到 8.0:理解 GROUP BY 的新规则与实战优化20241112
  • 怎么监控员工电脑?分享5个监控员工电脑的绝佳方法(立竿见影!建议收藏!)
  • SVN提交失败Can‘t create directory ‘E:\SVN\Tool\db\transactions\27-v.txn‘:
  • 【Oracle APEX开发小技巧 7】解决初始化数据在动态操作-变更中被识别跳出弹窗的问题
  • 【超详细】windows Docker安装
  • GDB:加载符号表
  • ubuntu22.04 qemu 安装windows on arm虚拟机
  • uniapp+vue3实现小程序和h5解压线上压缩包以及如何访问解压后的视频地址
  • 69-java 接口中可以有构造函数吗
  • 使用 VisionTransformer(VIT) FineTune 训练驾驶员行为状态识别模型
  • setTimeout设置为0和nexttick 谁先执行谁后执行
  • OXC:光交叉连接(optical cross-connect)-介绍
  • 计算机网络-VRRP基础概念
  • 第十七题:电话号码的字母组合
  • 上海市计算机学会竞赛平台2024年8月月赛丙组等差数列的素性
  • 数字图像处理基础:图像处理概念、步骤、方式介绍
  • 【区块链 + 人才服务】FISCO BCOS 高校实训和管理平台 | FISCO BCOS应用案例
  • 【Linux】自定义协议与序列化和反序列化
  • 热力图科普:数据可视化的利器
  • 68-java字符流和字节流
  • 【一嗨租车-注册安全分析报告-滑动验证加载不正常导致安全隐患】
  • DWG如何转换成PDF?总结了四种转换