当前位置: 首页 > article >正文

一些数学经验总结——关于将原一元二次函数增加一些限制条件后最优结果的对比(主要针对公平关切相关的建模)

1.没有分段的情况

原函数为一元二次凹函数(开口向下),如下:

f_0(x)=(ax-b)(d-cx), where\ a>0,b>0,c>0, d>0, and\ \frac{b}{a} < \frac{d}{c}.

因为要使得其存在正解,必须满足\frac{b}{a} < x < \frac{d}{c},那么\frac{b}{a} < \frac{d}{c}

上述函数的最优结果为:x^*=\frac{a d+b c}{2 a c}f(x^*)=\frac{a^2 d^2-2 a b c d+b^2 c^2}{4 a c}

对应的mathematica代码如下:

Clear["Global`*"]
f0[x_, a_, b_, c_, d_] := (a*x - b)*(d - c*x);(*(b c+a d)/(2 a c)*)
Maximize[{f1[x, a, b, c, d], a > 0 && b > 0 && c > 0 && d > 0}, x]

对应的mathematica结果如下:

2. 两个分段的情况

其中,

(1)第一个分段的函数为原函数;

(2)第二分段的函数为原函数的变体,即:
(i)第一因式与原函数的第一因式一样,即都为ax-b;

(ii)第二因式在原函数的第二因式基础上减去一部分(即ex-f),即为(d-cx)-(ex-f)

(3)其中分段点为减去部分为零时候的x值(即ex-f=0\Rightarrow x=\frac{f}{e}

\begin{array}{l} F(x) = \left\{ {\begin{array}{*{20}{c}} {​{f_0}(x)}&{x \le \frac{​{​{f_1}}}{​{​{e_1}}}}\\ {​{f_{1}}(x)}&{x > \frac{​{​{f_1}}}{​{​{e_1}}}} \end{array}} \right. = \left\{ {\begin{array}{*{20}{c}} {(ax - b)(d - cx)}&{x \le \frac{​{​{f_1}}}{​{​{e_1}}}}\\ {(ax - b)[(d - cx) - ({e_1}x - {f_1})]}&{x > \frac{​{​{f_1}}}{​{​{e_1}}}} \end{array}} \right.\\ = \left\{ {\begin{array}{*{20}{c}} {(ax - b)(d - cx)}&{x \le \frac{​{​{f_1}}}{​{​{e_1}}}}\\ {(ax - b)[(d + {f_1}) - (c + {e_1})x]}&{x > \frac{​{​{f_1}}}{​{​{e_1}}}.} \end{array}} \right. \end{array}

where\ a>0,b>0,c>0, d>0, \frac{b}{a} < \frac{d}{c}, e_1>0, f_1>0, and\ \frac{b}{a} < \frac{​{d + {f_1}}}{​{c + {e_1}}}.

针对第一分段f_0(x),在无限制条件情况下,最优结果为:x^*=\frac{a d+b c}{2 a c}f_0(x^*)=\frac{a^2 d^2-2 a b c d+b^2 c^2}{4 a c}

针对第二分段f_1(x),在无限制条件情况下,最优结果为:{x^*} = \frac{​{(ad + bc) + (a{f_1} + b{e_1})}}{​{2(ac + a{e_1})}}f_1(x^*)={\frac{​{​{​{(b(c + e_1) - a(d + f_1))}^2}}}{​{4a(c + e_1)}}}

外生参数的大小关系(可以利用mathematica验证):

(1)成立的一些:

(i)\frac{b}{a}<\frac{a d+b c}{2 a c}<\frac{d}{c}

(ii)\frac{b}{a} < \frac{​{\left( {bc + ad} \right) + \left( {b{e_1} + af_1} \right)}}{​{2\left( {ac + a{e_1}} \right)}} < \frac{​{d + {f_1}}}{​{c + {e_1}}}

(2)不成立的一些:

(i)\frac{​{ad + bc}}{​{2ac}} < \frac{​{​{f_1}}}{​{​{e_1}}} < \frac{​{(ad + bc) + (a{f_1} + b{e_1})}}{​{2(ac + a{e_1})}}

(ii)\frac{​{​{f_1}}}{​{​{e_1}}} < \frac{​{ad + bc}}{​{2ac}} < \frac{​{(ad + bc) + (a{f_1} + b{e_1})}}{​{2(ac + a{e_1})}}

mathematica的代码如下:

Clear["Global`*"]
f0[x_, a_, b_, c_, d_] := (a*x - b)*(d - c*x);(*(b c+a d)/(2 a c)*)
f1[x_, a_, b_, c_, d_, e1_, 
  f1_] := (a*x - 
    b)*((d - c*x) - (e1*x - 
      f1));(*((b c+a d)+(b e+a f))/(2 (a c+a e) )*)
(*f1[x_,a_,b_,c_,d_,e1_,f1_]:=(a*x-b)*((d+f1)-(c+e1)*x);*)

Fx[x_, a_, b_, c_, d_, e1_, f1_] := 
 Piecewise[{{f0[x, a, b, c, d], 
    x <= f1/e1}, {f1[x, a, b, c, d, e1, f1], x > f1/e1}}];


Reduce[a > 0 && b > 0 && c > 0 && d > 0 && e1 > 0 && f1 > 0 && 
  b/a < d/c && b/a < (d + f1)/(c + e1)]

Reduce[a > 0 && b > 0 && c > 0 && d > 0 && e1 > 0 && f1 > 0 && 
  b/a < d/c && b/a < (d + f1)/(c + e1) && 
  b/a < (b c + a d)/(2 a c) < d/c]
Reduce[a > 0 && b > 0 && c > 0 && d > 0 && e1 > 0 && f1 > 0 && 
  b/a < d/c && b/a < (d + f1)/(c + e1) && 
  b/a < ((b c + a d) + (b e1 + a f1))/(2 (a c + a e1) ) < (d + f1)/(
   c + e1)]
Reduce[a > 0 && b > 0 && c > 0 && d > 0 && e1 > 0 && f1 > 0 && 
  b/a < d/c && 
  b/a < (d + f1)/(c + e1) && (b c + a d)/(2 a c) < f1/
   e1 < ((b c + a d) + (b e1 + a f1))/(2 (a c + a e1) )]
Reduce[a > 0 && b > 0 && c > 0 && d > 0 && e1 > 0 && f1 > 0 && 
  b/a < d/c && b/a < (d + f1)/(c + e1) && 
  f1/e1 < (b c + a d)/(2 a c) < ((b c + a d) + (b e1 + a f1))/(
   2 (a c + a e1) )]

(*Reduce[a>0&&b>0&&c>0&&d>0&&e1>0&&f1>0&&b/a<d/c&&b/a<(d+f1)/(c+e1)&&(\
b c+a d)/(2 a c)>f1/e1&&f1/e1<((b c+a d)+(b e1+a f1))/(2 (a c+a e1) \
)&&f1[((b c+a d)+(b e1+a f1))/(2 (a c+a e1) ),a,b,c,d,e1,f1]>f0[(b \
c+a d)/(2 a c),a,b,c,d]]*)

比较重要的结论

(1)当\frac{​{ad + bc}}{​{2ac}} \le \frac{​{​{f_1}}}{​{​{e_1}}},那么最优的结果为${x^*} = \frac{​{ad + bc}}{​{2ac}}$

(2)当\frac{​{ad + bc}}{​{2ac}} > \frac{​{​{f_1}}}{​{​{e_1}}}

(2.1)当\frac{​{(ad + bc) + (a{f_1} + b{e_1})}}{​{2(ac + a{e_1})}} \le \frac{​{​{f_1}}}{​{​{e_1}}},那么最优的结果为{x^*} = \frac{​{​{f_1}}}{​{​{e_1}}},注意{f_0}(\frac{​{ad + bc}}{​{2ac}}) > {f_0}(\frac{​{​{f_1}}}{​{​{e_1}}})

(2.2)当\frac{​{(ad + bc) + (a{f_1} + b{e_1})}}{​{2(ac + a{e_1})}} > \frac{​{​{f_1}}}{​{​{e_1}}},那么最优的结果为{x^*} = \frac{​{(ad + bc) + (a{f_1} + b{e_1})}}{​{2(ac + a{e_1})}},注意{f_0}(\frac{​{ad + bc}}{​{2ac}}) > {f_1}(\frac{​{(ad + bc) + (a{f_1} + b{e_1})}}{​{2(ac + a{e_1})}})(可以利用mathematica验证)。

那么,总而言之,我们可以得出F(x)\leq f_0(x),当且仅当${x^*} = \frac{​{ad + bc}}{​{2ac}}$时,等号取到,即F(x)= f_0(x)

mathematica的代码如下:

Clear["Global`*"]
f0[x_, a_, b_, c_, d_] := (a*x - b)*(d - c*x);(*(b c+a d)/(2 a c)*)
f1[x_, a_, b_, c_, d_, e1_, 
  f1_] := (a*x - 
    b)*((d - c*x) - (e1*x - 
      f1));(*((b c+a d)+(b e+a f))/(2 (a c+a e) )*)
(*f1[x_,a_,b_,c_,d_,e1_,f1_]:=(a*x-b)*((d+f1)-(c+e1)*x);*)

Fx[x_, a_, b_, c_, d_, e1_, f1_] := 
 Piecewise[{{f0[x, a, b, c, d], 
    x <= f1/e1}, {f1[x, a, b, c, d, e1, f1], x > f1/e1}}];


(*Reduce[a>0&&b>0&&c>0&&d>0&&e1>0&&f1>0&&b/a<d/c&&b/a<(d+f1)/(c+e1)]

Reduce[a>0&&b>0&&c>0&&d>0&&e1>0&&f1>0&&b/a<d/c&&b/a<(d+f1)/(c+e1)&&b/\
a<(b c+a d)/(2 a c)<d/c]
Reduce[a>0&&b>0&&c>0&&d>0&&e1>0&&f1>0&&b/a<d/c&&b/a<(d+f1)/(c+e1)&&b/\
a<((b c+a d)+(b e1+a f1))/(2 (a c+a e1) )<(d+f1)/(c+e1)]
Reduce[a>0&&b>0&&c>0&&d>0&&e1>0&&f1>0&&b/a<d/c&&b/a<(d+f1)/(c+e1)&&(b \
c+a d)/(2 a c)<f1/e1<((b c+a d)+(b e1+a f1))/(2 (a c+a e1) )]
Reduce[a>0&&b>0&&c>0&&d>0&&e1>0&&f1>0&&b/a<d/c&&b/a<(d+f1)/(c+e1)&&f1/\
e1<(b c+a d)/(2 a c)<((b c+a d)+(b e1+a f1))/(2 (a c+a e1) )]*)

Reduce[a > 0 && b > 0 && c > 0 && d > 0 && e1 > 0 && f1 > 0 && 
  b/a < d/c && 
  b/a < (d + f1)/(c + e1) && (b c + a d)/(2 a c) > f1/e1 && 
  f1/e1 < ((b c + a d) + (b e1 + a f1))/(2 (a c + a e1) ) && 
  f1[((b c + a d) + (b e1 + a f1))/(2 (a c + a e1) ), a, b, c, d, e1, 
    f1] > f0[(b c + a d)/(2 a c), a, b, c, d]]

3. 三个分段的情况

其中,

(1)第一个分段的函数为原函数;

(2)第二分段的函数为原函数的变体,即:
(i)第一因式与原函数的第一因式一样,即都为ax-b;

(ii)第二因式在原函数的第二因式基础上减去一部分(即ex-f),即为(d-cx)-(e_1x-f_1)

(3)其中第二分段点为减去部分为零时候的x值(即e_1x-f_1=0\Rightarrow x=\frac{f_1}{e_1}

(4)第三分段的函数为原函数的变体,即:
(i)第一因式与原函数的第一因式一样,即都为ax-b;

(ii)第二因式在原函数的第二因式基础上减去一部分(即e_2x - f_2),即为(d-cx)-(e_2x-f_2)

(5)其中第三分段点为减去部分为零时候的x值(即e_2x-f_2=0\Rightarrow x=\frac{f_2}{e_2}

\begin{array}{l} G(x) = \left\{ {\begin{array}{*{20}{c}} {​{f_0}(x)}&{x \le \frac{​{​{f_1}}}{​{​{e_1}}}}\\ {​{f_1}(x)}&{\frac{​{​{f_1}}}{​{​{e_1}}} < x \le \frac{​{​{f_2}}}{​{​{e_2}}}}\\ {​{f_2}(x)}&{x > \frac{​{​{f_2}}}{​{​{e_2}}}} \end{array}} \right. = \left\{ {\begin{array}{*{20}{c}} {(ax - b)(d - cx)}&{x \le \frac{​{​{f_1}}}{​{​{e_1}}}}\\ {(ax - b)[(d - cx) - ({e_1}x - {f_1})]}&{\frac{​{​{f_1}}}{​{​{e_1}}} < x \le \frac{​{​{f_2}}}{​{​{e_2}}}}\\ {(ax - b)[(d - cx) - ({e_2}x - {f_2})]}&{x > \frac{​{​{f_2}}}{​{​{e_2}}}} \end{array}} \right.\\ = \left\{ {\begin{array}{*{20}{c}} {(ax - b)(d - cx)}&{x \le \frac{​{​{f_1}}}{​{​{e_1}}}}\\ {(ax - b)[(d + {f_1}) - (c + {e_1})x]}&{\frac{​{​{f_1}}}{​{​{e_1}}} < x \le \frac{​{​{f_2}}}{​{​{e_2}}}}\\ {(ax - b)[(d + {f_2}) - (c + {e_2})x]}&{x > \frac{​{​{f_2}}}{​{​{e_2}}}.} \end{array}} \right. \end{array}

where\ a>0,b>0,c>0, d>0, \frac{b}{a} < \frac{d}{c}, e_1>0, f_1>0, \frac{b}{a} < \frac{​{d + {f_1}}}{​{c + {e_1}}}, e_2>0, f_2>0, \frac{b}{a} < \frac{​{d + {f_2}}}{​{c + {e_2}}}, and\ \frac{​{​{f_1}}}{​{​{e_1}}} < \frac{​{​{f_2}}}{​{​{e_2}}}.

针对第一分段f_0(x),在无限制条件情况下,最优结果为:x^*=\frac{a d+b c}{2 a c}f_0(x^*)=\frac{a^2 d^2-2 a b c d+b^2 c^2}{4 a c}

针对第二分段f_1(x),在无限制条件情况下,最优结果为:{x^*} = \frac{​{(ad + bc) + (a{f_1} + b{e_1})}}{​{2(ac + a{e_1})}}f_1(x^*)={\frac{​{​{​{(b(c + e_1) - a(d + f_1))}^2}}}{​{4a(c + e_1)}}}

针对第三分段f_2(x),在无限制条件情况下,最优结果为:{x^*} = \frac{​{(ad + bc) + (a{f_2} + b{e_2})}}{​{2(ac + a{e_2})}}f_2(x^*)={\frac{​{​{​{(b(c + e_2) - a(d + f_2))}^2}}}{​{4a(c + e_2)}}}

外生参数的大小关系(可以利用mathematica验证):

(1)成立的一些:

(i)\frac{b}{a}<\frac{a d+b c}{2 a c}<\frac{d}{c}

(ii)\frac{b}{a} < \frac{​{\left( {bc + ad} \right) + \left( {b{e_1} + af_1} \right)}}{​{2\left( {ac + a{e_1}} \right)}} < \frac{​{d + {f_1}}}{​{c + {e_1}}}

(iii)\frac{b}{a} < \frac{​{\left( {bc + ad} \right) + \left( {b{e_2} + af_2} \right)}}{​{2\left( {ac + a{e_2}} \right)}} < \frac{​{d + {f_2}}}{​{c + {e_2}}}

(2)不成立的一些:

(i)\frac{​{ad + bc}}{​{2ac}} < \frac{​{​{f_1}}}{​{​{e_1}}} < \frac{​{(ad + bc) + (a{f_1} + b{e_1})}}{​{2(ac + a{e_1})}}

(ii)\frac{​{​{f_1}}}{​{​{e_1}}} < \frac{​{ad + bc}}{​{2ac}} < \frac{​{(ad + bc) + (a{f_1} + b{e_1})}}{​{2(ac + a{e_1})}}

(i)\frac{​{ad + bc}}{​{2ac}} < \frac{​{​{f_2}}}{​{​{e_2}}} < \frac{​{(ad + bc) + (a{f_2} + b{e_2})}}{​{2(ac + a{e_2})}}

(ii)\frac{​{​{f_2}}}{​{​{e_2}}} < \frac{​{ad + bc}}{​{2ac}} < \frac{​{(ad + bc) + (a{f_2} + b{e_2})}}{​{2(ac + a{e_2})}}

比较重要的结论

(1)当\frac{​{ad + bc}}{​{2ac}} \le \frac{​{​{f_1}}}{​{​{e_1}}},那么最优的结果为${x^*} = \frac{​{ad + bc}}{​{2ac}}$

(2)当\frac{​{ad + bc}}{​{2ac}} > \frac{​{​{f_1}}}{​{​{e_1}}}

(2.1)当\frac{​{(ad + bc) + (a{f_1} + b{e_1})}}{​{2(ac + a{e_1})}} \le \frac{​{​{f_1}}}{​{​{e_1}}},那么第一分段与第二分段对比下最优的结果为{x^*} = \frac{​{​{f_1}}}{​{​{e_1}}},注意{f_0}(\frac{​{ad + bc}}{​{2ac}}) > {f_0}(\frac{​{​{f_1}}}{​{​{e_1}}})

(2.2)当\frac{​{(ad + bc) + (a{f_1} + b{e_1})}}{​{2(ac + a{e_1})}} > \frac{​{​{f_1}}}{​{​{e_1}}},那么第一分段与第二分段对比下最优的结果为{x^*} = \frac{​{(ad + bc) + (a{f_1} + b{e_1})}}{​{2(ac + a{e_1})}},注意{f_0}(\frac{​{ad + bc}}{​{2ac}}) > {f_1}(\frac{​{(ad + bc) + (a{f_1} + b{e_1})}}{​{2(ac + a{e_1})}})(可以利用mathematica验证);

(3)当\frac{​{ad + bc}}{​{2ac}} > \frac{​{​{f_2}}}{​{​{e_2}}}

(3.1)当\frac{​{(ad + bc) + (a{f_2} + b{e_2})}}{​{2(ac + a{e_2})}} \le \frac{​{​{f_2}}}{​{​{e_2}}},那么第一分段与第三分段对比下最优的结果为{x^*} = \frac{​{​{f_2}}}{​{​{e_2}}},注意{f_0}(\frac{​{ad + bc}}{​{2ac}}) > {f_0}(\frac{​{​{f_1}}}{​{​{e_1}}})

(3.2)当\frac{​{(ad + bc) + (a{f_2} + b{e_2})}}{​{2(ac + a{e_2})}} > \frac{​{​{f_2}}}{​{​{e_2}}},那么第一分段与第三分段对比下最优的结果为{x^*} = \frac{​{(ad + bc) + (a{f_2} + b{e_2})}}{​{2(ac + a{e_2})}},注意{f_0}(\frac{​{ad + bc}}{​{2ac}}) > {f_2}(\frac{​{(ad + bc) + (a{f_2} + b{e_2})}}{​{2(ac + a{e_2})}})(可以利用mathematica验证)。

那么,总而言之,我们可以得出G(x)\leq f_0(x),当且仅当${x^*} = \frac{​{ad + bc}}{​{2ac}}$时,等号取到,即G(x)= f_0(x)

该结论可以扩展到N个分段的情况下,也就是N个分段的函数的最优结果不会优于原函数f_0(x)的最优结果。


http://www.kler.cn/a/295013.html

相关文章:

  • 使用CentOS宝塔面板docker搭建EasyTier内网穿透服务
  • AOSP去特征|AOSP导入android-studio|AOSP导入clion
  • YOLOv6-4.0部分代码阅读笔记-effidehead_lite.py
  • Android——多线程、线程通信、handler机制
  • 使用Ida Pro和Core Dump文件定位崩溃位置
  • itextpdf打印A5的问题
  • 分数阶微积分MATLAB计算
  • 将你的github仓库设置为web代理
  • Java零基础-如何在分布式系统中进行日志管理?
  • 【鸿蒙】HarmonyOS NEXT星河入门到实战1-开发环境准备
  • Vulnhub:Dr4g0n b4ll 1
  • Qt/C++开源项目 TCP客户端调试助手(源码分享+发布链接下载)
  • <class ‘pyspark.sql.dataframe.DataFrame‘>
  • Eureka原理与实践:构建高可用微服务架构的基石
  • MCU5.51单片机的最小系统
  • IDEA git提交时如何忽略某个文件或文件夹
  • 任务执行拓扑排序(华为od机考题)
  • Elasticsearch - SpringBoot 索引与文档相关demo
  • Spring Boot 部署方案!打包 + Shell 脚本详解
  • 【知识分享】MQTT实战-使用mosquitto客户端连接emqx服务器
  • 【人工智能】Transformers之Pipeline(十五):总结(summarization)
  • ubuntu上通过openvswitch卸载实现roce over vxlan
  • 橘子学ES实战操作之管道类型Ingest pipelines的基本使用
  • Kubernetes 1.25 containerd 环境部署 SuperMap iManager
  • 【MRI基础】TR 和 TE 时间概念
  • 文心快码前端工程师观点分享:人机协同新模式的探索之路(三)